Matrix Infrared Spectra and DFT Computations of CH₂CNH and CH₂NCH Produced from CH₃CN by Laser-Ablation Plume Radiation

Han-Gook Cho

Department of Chemistry, University of Incheon, Incheon 406-772, Korea. E-mail: hgc@incheon.ac.kr Received November 22, 2012, Accepted February 5, 2013

The smallest ketenimine and hydrogen cyanide *N*-methylide (CH₂CNH and CH₂NCH) are provided from the argon/acetonitrile matrix samples exposed to radiation from laser ablation of transition-metals. New infrared bands are observed in addition to better determination of the vibrational characteristics for the previously reported bands, and the ¹³C substituted isotopomers (13 CH₂ 13 CNH and 13 CH₂N¹³CH) are also generated. Density functional frequency calculations and the D and ¹³C isotopic shifts substantiate the vibrational assignments. CH₂CNH is probably produced through single-step conversion of CH₃CN, whereas CH₂NCH through two-step conversion *via 2H*-azirine. Inter-conversions between these two products evidently do not occur during photolysis and annealing.

Key Words : Acetonitrile, Ketenimine, N-Methylide, Matrix-infrared, DFT

Introduction

While Acetonitrile has been a model compound in the development of vibrational spectroscopy,¹ its photo-isomers and fragments have also been the subjects of many spectroscopic and molecular dynamics studies.¹⁻⁵ Especially interconversions between the cyano and isocyano isomers, formation of the cyclic derivatives, electron-trapping, and C-H bond dissociation have drawn much attention, and their products have been investigated. However, only the strong vibrational bands are observed for many transient species in earlier days,³⁻⁷ and therefore, the information for their vibrational characteristics need to be improved. The higher product yield and enhanced instrumental resolution allow observation of the weaker bands and better determination of their frequencies.^{8,9}

UV-photolysis of acetonitrile and dissociation of larger Ncontaining compounds have been the major routes for preparation of the isomers and fragments of acetonitrile.^{3,6,7} Jacox has identified CH₂CNH by uv irradiation of acetonitrile and listed three more groups of unidentified product absorptions.⁶ Maier *et al.* have succeeded in providing CH₂NCH and several other acetonitrile isomers by photodissociation of vinyl azide (CH₂CHN₃).⁷ It has also been shown that the radiation from transition-metal plume by laser-ablation is an effective UV source, allowing valuable opportunities to prepare the photo-chemical products during co-deposition with the reagent.^{8,9} Recently the cyano and isocyano methyl radicals (CH2CN and CH2NC) are identified in the acetonitrile spectra along with the weaker absorptions as well as the previously examined strong wagging bands.⁸ The DFT results show that the two methyl radicals are easily inter-convertible via the cyclic isomer, cyc-CH₂CN.

In this study, we report matrix IR spectra of CH₂CNH and CH₂NCH, which are among the primary isomerization pro-

ducts of acetonitrile. The newly observed absorptions and better determined frequencies are presented, and the ¹³C substituted isotopomers ($^{13}CH_2^{13}CNH$ and $^{13}CH_2N^{13}CH$) are also provided. The smallest ketenimine and hydrogen cyanide *N*-methylide are apparently produced *via* two different reaction paths and not inter-convertible.

Experimental and Computational Methods

Reaction of laser-ablated transition-metal and reagent in excess argon has been an effective route to provide new metal-containing transient species.¹⁰ In these experiments, transition-metal atoms and intense radiation from the laserablation plume impinge on the depositing matrix sample, causing photo-isomerization and fragmentation of the reagent.¹¹ Reagent gas mixtures are typically 0.125-0.500% in argon. The Nd:YAG laser fundamental (1064 nm, 10 Hz repetition rate, 10 ns pulse width) was focused onto the rotating metal target using 5-10 mJ/pulse. After deposition, infrared spectra were recorded at 0.5 cm⁻¹ resolution using a Nicolet 550 spectrometer with a Hg-Cd-Te range B detector. Then samples were irradiated for 20 min periods by a mercury arc street lamp (175 W) with the globe removed using a combination of optical filters or annealed to allow further reagent diffusion.

The H₂CCNH and H₂CNCH spectra shown in this report were recorded from samples prepared by co-deposition of laser-ablated Zr (Johnson-Matthey) with acetonitrile isotopomers (CH₃CN, CD₃CN, and ¹³CH₃¹³CN) in excess argon at 10 K using a closed-cycle refrigerator (Air Products, Displex). However, other transition-metals (Groups 3 and 5-8 and actinides) also yield the same H₂CCNH and H₂CNCH absorptions while the relative intensities between H₂CCNH and H₂CNCH vary due to different laser ablation plume radiation from specific metal surfaces.¹² Therefore, these metal independent absorptions do not involve a metal containing species.

Complementary density functional theory (DFT) calculations were also carried out using the Gaussian 09 package,¹³ the B3LYP density functional,¹⁴ and 6-311++G(3df,3pd) basis sets for C, H, and N to provide a consistent set of vibrational frequencies and energies for the reaction products and their analogues. Additional BPW91¹⁵ calculations were done to confirm the B3LYP results. Geometries were fully relaxed during optimization, and the optimized geometry was confirmed by vibrational analysis. Every minimum identified on the potential energy surface (PES) was found to have all positive harmonic vibrational frequencies, and each transition state structure to have only one imaginary frequency, corresponding to the reaction coordinate. Intrinsic reaction coordinate (IRC) calculations¹⁶ have been performed to link transition structures with the reactants and products. The vibrational frequencies were calculated analytically, and the zero-point energy is included in the calculation of binding energy of a metal complex.

Results and Discussion

Observation of CH₂CNH and CH₂NCH. Figures 1-3 show the matrix IR spectra in CH₂CNH and CH₂NCH absorption regions from co-deposition of Zr with CH₃CN, CD₃CN, and ¹³CH₃¹³CN and their variation in subsequent photolysis and annealing.¹² Absorptions form other isomers and fragments, particularly CH₃NC, CH₂CN, and CH₂NC, are also observed along with Zr containing products.²⁻⁵ "CNH" and "NCH" stand for the CH₂CNH and CH₂NCH absorptions in Figures 1-3. The CNH absorptions are much stronger than the NCH absorptions. They gradually decrease throughout the process of photolysis and annealing, but retain most of their absorption intensities even after annealing at 28 K. On the other hand, the NCH absorptions

Figure 1. IR spectra in the CH₂CNH and CH₂NCH absorption regions for laser-ablated Zr atoms co-deposited with CH₃CN in excess argon at 10 K and their variation. (a) Zr + 0.25% CH₃CN in Ar co-deposited for 1 h. (b) As (a) after photolysis ($\lambda > 420$ nm). (c) As (b) after photolysis ($240 < \lambda < 380$ nm). (d) As (c) after annealing to 28 K. **CNH** and **NCH** stand for the CH₂CNH and CH₂NCH absorptions, and P, c, and g designate the precursor, common, and Zr + CH₃CN product absorptions. CH₂NC, CH₄, CH₃NC, and ZrO₂ absorptions are also indicated.

remain almost unchanged on visible ($\lambda > 420$ nm) irradiation, but decrease to about a third the original intensity on uv (240 $< \lambda < 380$ nm) irradiation and gradually decrease in annealing. The observed H₂CCNH and H₂CNCH frequencies are compared with the B3LYP and BPW91 computed values in Tables 1 and 2, and the previously reported values are also listed.^{6,7}

The strongest **CNH** CCN *anti*-symmetric stretching absorption and its D counterpart are observed at 2037.2 and 1995.3 cm⁻¹ (the previous values of 2040 and 1998 cm⁻¹),⁶ and the new ¹³C counterpart at 1981.5 cm⁻¹. The ¹³C shift larger than the D shift is consistent with the CCN stretching mode, which is in essence vibration of the center C between C and N. The second strong **CNH** A' NCH bending absorp-

Figure 2. IR spectra in the CD₂CND and CD₂NCD absorptions regions for laser-ablated Zr atoms co-deposited with CD₃CN in excess argon at 10 K and their variation. (a) Zr + 0.50% CD₃CN in Ar co-deposited for 1 h. (b) As (a) after photolysis ($\lambda > 420$ nm). (c) As (b) after photolysis ($240 < \lambda < 380$ nm). (d) As (c) after annealing to 28 K. **CND** and **NCD** stand for the CD₂CND and CD₂NCD absorptions, and P, c, and g designate the precursor, common, and Zr + CD₃CN product absorptions. CH₃NC, ZrO₂, and CO₂ absorptions are also indicated.

Figure 3. IR spectra in the ¹³CH₂¹³CNH and ¹³CN¹³CH₂ absorption regions for laser-ablated Zr atoms co-deposited with ¹³CH₃¹³CN in excess argon at 10 K and their variation. (a) Zr + 0.50% ³CH₃¹³CN in Ar co-deposited for 1 h. (b) As (a) after photolysis ($\lambda > 420$ nm). (c) As (b) after photolysis (240 < $\lambda <$ 380 nm). (d) As (c) after annealing to 28 K. ¹³CNH and N¹³CH stand for the ¹³CH₂¹³CNH and ¹³CH₂N¹³CH absorptions, and P, c, and g designate the precursor, common, and Zr + ¹³CH₃CN product absorptions. CO₂ absorption is also indicated.

Matrix Infrared Spectra and DFT Computations of CH₂CNH and CH₂NCH Bull. Korean Chem. Soc. 2013, Vol. 34, No. 5 1363

		-				-									
Approximate Description		CH ₂ C			¹³ CH ₂ ¹³ CNH										
	Obs ^b	B3LYP ^c	Int ^c	BPW91	^d Int ^d	Obs ^b	B3LYP ^c	Int ^c	BPW91	^d Int ^d	Obs^b	B3LYP ^c	Int ^c	BPW91 ^d	Int ^d
A' N-H str.	3297.8	3477.6	22	3393.8	12	2452.9	2553.7	42	2491.8	27	3297.5	3477.6	22	3393.8	11
A" CH2 as. str.		3250.6	1	3193.1	1		2420.4	0	2377.0	0		3237.3	1	3180.0	1
A' CH ₂ s. str.	3043.5	3164.2	9	3107.1	8	2245.3	2318.1	71	2275.9	61	3036.8	3158.1	8	3101.1	7
A' CCN as. str.	2037.2, 2040 ^e	2115.5	436	2070.8	370	1995.3, 1998	2072.9	385	2029.3	332	1981.5	2050.2	410	2006.8	347
A' CH ₂ scis.	1350.7	1439.6	5	1388.0	6	covered	1251.8	1	1215.5	1	1337.8	1427.0	6	1375.3	8
A' CCN s. str.	1123.4, 1124 ^e	1166.5	18	1136.5	16	919.9, 921 ^e	947.6	23	916.8	23	1108.5	1150.5	18	1121.3	15
A' NCH bend	999.6, 1000 ^e	1025.3	210	1000.0	196	799.4, 800 ^e	815.2	86	792.4	79	995.6	1020.7	210	995.7	196
A" CH2 rock		1001.0	0	962.0	0		850.4	0	818.4	0		984.3	0	945.8	0
A" N-H tort	871.6, 872 ^e	896.6	53	872.4	49	647.2, 648 ^e	661.2	30	643.3	28	871.5	896.4	53	872.2	49
A' CH2 wag	689.2, 690 ^e	717.7	87	665.7	86	544 ^g	569.7	45	527.0	42	684.0	711.3	87	660.2	85
A' CCN ip bend	458.1	484.1	22	468.1	20		429.4	30	417.7	30	446.3^{f}	470.7	19	454.9	18
A" CCN oop bend		421.9	0	407.0	1		361.1	0	347.6	1		413.6	0	399.1	1

Table 1. Calculated Fundamental Frequencies of CH₂CNH Isotopomers in the Ground ¹A' State^a

^{*a*}Frequencies and intensities are in cm⁻¹ and km/mol. Frequencies and intensities are computed with 6-311++G(3df, 3pd) for harmonic calculations. ^{*b*}Observed in an argon matrix. ^{*c*}Computed with B3LYP. ^{*d*}Computed with BPW91. ^{*c*}Ref 6. ^{*f*}Tantative assignment. ^{*g*}Overlapped with a CH₂CN band. CH₂CNH has a C_s structure.

tion and its D counterpart are observed at 999.6 and 799.4 cm⁻¹ (close to the reported values of 1000 and 800 cm⁻¹), and ¹³C substitution shifts it to 995.6 cm⁻¹. The third strong A' CH₂ wagging band at 689.2 cm⁻¹ (the previous frequency of 690 cm⁻¹) shifts to 544 and 684 cm⁻¹ on deuteration and ¹³C substitution. The N-H torsion and CCN symmetric stretching frequencies and their D counterparts are also close to the previously reported values and the ¹³C counterparts observed. The five previously reported frequencies⁶ are all slightly higher (0.4-2.8 cm⁻¹) than the measured frequencies of the ¹³CH₂¹³CNH show good correlation with the DFT values as

shown in Table 1.

Four weaker **CNH** absorptions are newly observed as well. The one at 3297.8 cm⁻¹ shifts to 2452.9 and 3297.5 cm⁻¹ on deuteration and ¹³C substitution (H/D ratios of 1.344). The high frequency, large D shift, and negligible ¹³C shift lead to an assignment to the N-H stretching mode of CH₂CNH. The **CNH** absorption at 3043.5 cm⁻¹ is designated to the CH₂ symmetric stretching mode with its D and ¹³C counterparts at 2245.3 and 3036.8 cm⁻¹ (H/D ratio of 1.355). The one at 1350.7 cm⁻¹ is assigned to the CH₂ scissoring mode with its ¹³C counterpart at 1337.8 cm⁻¹, and the absorption at 458.1 cm⁻¹ is assigned to the CCN in-plane

Table 2. Calculated Fundamental Frequencies of CH₂NCH Isotopomers in the Ground ¹A' State^a

Approximate		CI	H ₂ NC	Н			¹³ CH ₂ N ¹³ CH								
Description	Obs ^b	B3LYP ^c	Int ^c	$BPW91^d$	Int ^d	Obs ^b	B3LYP ⁴	Int ^c	BPW91	^l Int ^d	Obs^b	B3LYP ^c	Int ^c	BPW91 ^d	Int ^d
A" CH2 as. str.		3246.0	1	3188.3	1		2423.7	2	2380.0	1		3232.0	1	3174.6	1
A' CH ₂ s. str.		3141.5	2	3084.9	2	2075.3	2279.2	12	2238.0	11		3136.5	1	3079.9	1
A' C-H str.	3019.5	3099.1	3	3057.3	3	covered	2311.1	13	2285.2	16	3015.4	3089.0	4	3047.2	4
A' CNC as. str.	1914.7, 1914.5 ^e	1996.7	266	1988.0	250	1870.5, 1869.4 sh, 1870.2 ^e	1944.3	296	1932.6	270	1890.8	1972.5	251	1963.5	237
A' CH ₂ scis.		1502.9	4	1447.3	5		1301.2	1	1261.0	0		1489.2	5	1433.8	6
A' CNC s. str.	1183.7, 1183.6 ^e	1232.9	8	1199.7	5	982.8, 982.6 ^e	1002.6	11	969.8	10	1172.0	1195.9	7	1164.0	4
A" CH ₂ rock	1127.4, 1127.3 ^e	1147.9	7	1103.3	5	900.5, 900.1 ^e	918.0	6	883.8	4	1116.3	1139.4	7	1095.2	5
A" CH2 tort	927.6	965.2	11	921.9	12		719.0	7	686.3	8	925.1	961.5	11	918.4	11
A' NCH bend	868.5, 866.3 ^e	910.2	375	872.3	317	709.6, 708.0sh 708.3 ^e	,737.1	175	704.4	149	862.1	903.2	373	865.7	316
A' CH2 wag	639.6 ^f	735.6	79	654.0	98	520.1 ^{<i>f</i>}	589.0	35	527.1	34	635.8 ^f	728.8	79	648.1	99
A' CNC in bend	473.5, 473.5 ^e	489.9	32	468.3	33	414.6 ^e	427.2	49	406.3	56	466.7 ^f	486.2	31	464.6	30
A" CNC oop bend	d	350.5	4	336.5	2		315.4	2	302.6	1		347.6	4	334.0	2

^{*a*}Frequencies and intensities are in cm⁻¹ and km/mol. Frequencies and intensities are computed with 6-311++G(3df, 3pd) for harmonic calculations. ^{*b*}Observed in an argon matrix. ^{*c*}Computed with B3LYP. ^{*d*}Computed with BPW91. ^{*c*}Ref 7. ^{*f*}Tentative assignment. sh indicates shoulder. CH₂NCH has a C_s structure. bending mode. The 9 vibrational bands of CH_2CNH with sizable absorption intensities are all observed in this study as shown in Table 1.

Though much weaker, the NCH absorptions are still readily distinguishable with their large decrease in absorption intensity on uv (240 $< \lambda <$ 380 nm) irradiation. The five previously reported CH2NCH vibrational bands are again the strongest ones in our spectra. These absorptions are observed close (slightly higher) to the previous values. The strongest NCH bending absorption and its D counterpart are observed at 868.5 and 709.6 cm⁻¹ (the previous values are 866.3 and 708.3 cm⁻¹), and the ¹³C counterpart at 862.1 cm⁻¹. The second strongest CNC anti-symmetric stretching band and its D counterpart at 1914.7 and 1870.5 cm⁻¹ are also compared with the previous values of 1914.5 and 1870.2 cm⁻¹ and carry the ¹³C counterpart at 1890.8 cm⁻¹. The weaker CNC symmetric stretching, CH₂ rocking, and NCH bending absorptions are also observed near the previously reported values along with the new ¹³C counterparts.

Jacox has performed microwave-discharge of Ar/CH₃CN (Ar radiation of 121.6 nm) and subsequent mercury-arc photolysis ($\lambda > 250$ nm) and classified the product absorptions into Groups A-D on the basis of their behavior on photolysis.⁶ The author has assigned Group B to CH₂CNH while leaving the other three groups unidentified. It is worthy to mention at this point that among the three groups, Group A belongs to CH₂NCH, the CNC *anti*-symmetric stretching, CH₂ rocking, and NCH bending absorptions, and Groups C and D to CH₂CN and CH₂NC.⁸ This is consistent with our results that both the smallest ketenimine and hydrogen cyanide *N*-methylide are generated along with CH₂CN and CH₂NC by photolysis of argon/acetonitrile matrix sample.

Four weaker **NCH** absorptions are also observed. The ones at 3019.5 and 927.6 cm⁻¹ are accompanied with their ¹³C counterparts at 3015.4 and 925.1 cm⁻¹ and are designated to the C-H stretching and CH₂ torsion mode without observation of the D counterparts. The B3LYP and BPW91 CH₂ wagging frequencies (735.6 and 654.0 cm⁻¹) show a large difference. The weak absorption at 639.6 cm⁻¹ is tentatively assigned to the CH₂ wagging mode with the D and ¹³C counterparts at 520.1 and 635.8 cm⁻¹. Another **NCH** absorption at 2075.3 cm⁻¹ in the CD₃CN spectra are assigned to the CH₂ symmetric stretching mode without observation of its isotopic counterparts. These 9 product absorptions and consistency with the previous results substantiate production of CH₂NCH.

Reactions in the Matrix. CH₂CNH and CH₂NCH, 92 and 212 kJ/mol higher than CH₃CN, are the major photo-isomerization products of acetonitrile along with CH₃NC observed in the matrix IR spectra (Figures 1-3).^{2,6,12} The B3LYP structures of CH₂CNH and CH₂NCH are shown in Figure 4. Both products own the 1A' ground electronic states and similar C_s structures. CH₂CNH is most probably produced by single step conversion of acetonitrile as shown in Figure 5. One of the methyl H migrates to N while the remaining molecular structure (CH₂CN) is largely preserved. TS1 (The transition state for CH₃CN \rightarrow CH₂CNH) is 369 kJ/ Han-Gook Cho

Figure 4. The B3LYP structures of CH₂CNH, CH₂NCH, CH₃CN, CH₃NC, 2*H*-azirine, and TS1-5. CH₂CNH, CH₂NCH, and 2*H*-azirine own C_s structures, and CH₃CN and CH₃NC C_{3v} structures. TS1, TS4, and TS5 possess C_s structures while TS2 and TS3 C₁ structures. The bond lengths and angles are in Å and degrees.

Figure 5. The relative energies of CH₂CNH, CH₂NCH, CH₃CN, CH₃NC, 2*H*-azirine, and the transition states between them in the singlet potential energy surface. CH₂CNH, CH₂NCH, CH₃NC, and 2*H*-azirine are 92, 212, 98, and 199 kJ/mol higher than CH₃CN, respectively, and TS1-5 are 369, 397, 394, 261, and 520 kJ/mol higher than CH₃CN.

mol higher than CH₃CN (Figure 5). Multi-step conversions *via* the plausible isomers of acetonitrile such as azirine and methyl isocyanide are also examined, but they are energetically unfavorable and the transition states also do not lead to the product according to our IRC analyses.

On the other hand, conversion of acetonitrile to CH₂NCH probably occurs in two steps, CH₃CN \rightarrow 2*H*-azirine (*cyc*-CH₂NCH) \rightarrow CH₂NCH. The transition state between CH₃CN and 2*H*-azirine (TS2) is 397 kJ/mol higher than acetonitrile and has a near planar structure in contrast to the structure of TS1. 2*H*-azirine is known to readily convert to other products on photolysis or to undergo reactions with a variety of reagents to form more complex products.⁷ Ring-opening (breaking the C-C bond) results in generation of CH₂NCH through TS3. Another possible reaction path is *via* methyl isocyanide, which is one of the primary products, CH₃CN \rightarrow CH₃NC \rightarrow CH₂NCH. However, its energetically high transition state (TS5), which is 520 and 422 kJ/mol higher than CH₃CN and CH₃NC, respectively, makes the reaction path less favorable.

Inter-conversions between CH₂CNH and CH₂NCH apparently do not occur unlike the previously studied CH₂CN-CH₂NC case.⁸ The dramatic decrease of NCH absorptions on uv irradiation is not accompanied with increase of the CNH absorptions. In fact, the two sets of product absorptions continuously decrease in the process of photolysis and annealing while the extents of variation differ each other. Inter-conversions would result in an increase of a product and a decrease of the other. Inter-conversions between these two species would occur probably via cyclic configurations $(CH_2CNH \leftrightarrow cyc-CH_2CNH \leftrightarrow cyc-CH_2NCH \leftrightarrow CH_2NCH).$ Cyc-CH₂NHC is 119 kJ/mol higher in energy than cyc-CH₂NCH (2*H*-azirine), and the transition states between the species along the reaction path are 388, 369, and 303 kJ/mol higher in energy than CH₂CNH, suggesting that the threestep isomerization is not efficient.

2*H*-azirine is illusive in matrix-IR spectra, due to its low stability and relatively low absorption intensities.^{6,7} Maier *et al*. have reported provision of this small *N*-containing cyclic compound by photo-dissociation of vinyl azide (CH₂CHN₃) without observation of its isotopomers.⁷ Weak product absorptions are observed at 972.4, 1228.4, and 772.4 cm⁻¹ in this study near the reported CH₂ rocking, C-C stretching, and C-H out-of-plane bending frequencies, the strongest bands of the complex. No more attempts have been made to identify this product due to the low absorption intensities.

Conclusions

The smallest ketenimine and hydrogen cyanide N-methylide (CH₂CNH and CH₂NCH) are observed in the infrared spectra of argon/acetonitrile matrix samples prepared under exposure to laser-ablation irradiation. The frequencies of the strongest five absorptions are near the previously reported values for each species and four more absorptions are newly observed. The frequencies of the ¹³C substituted isotopomers are also reported, and the observed frequencies correlate well with the DFT computed values. DFT results also reveal that CH₂CNH is most probably produced in a single-step conversion from CH₃CN, whereas CH₂NCH in a two-step reaction via 2H-azirine. The CH₂NCH absorptions dramatically decrease on uv irradiation while the CH₂CNH also decrease gradually in the process of photolysis and annealing, indicating that these two acetonitrile isomers are not readily inter-convertible. Computation results for the plausible inter-conversion reaction path also support the observed results.

Acknowledgments. This work is partially supported by University of Incheon Research Grant in 2011.

References and Notes

- (a) Sandholm, S. T.; Bjarnov, E.; Schwendeman, R. H. J. Mol. Spectrosc. 1982, 95, 276-287. (b) Kukolich, S. G. J. Chem. Phys. 1982, 76, 997-1006. (c) Sassi, P.; Paliani, G.; Cataliotti, R. S. J. Chem. Phys. 1998, 108, 10197-10205.
- (b) Deng, R.; Trenary, M. J. Phys. Chem. C 2007, 111, 17088-17093. (MeCN isomers). (b) Yang, X.; Maeda, S.; Ohno, K. J. Phys. Chem. A 2005, 109, 7319-7358. (c) Fan, L.; Ziegler, T. J. Chem. Phys. 1990, 92, 3645-3652. (PES of CH₃CN). (d) Hattori, R.; Suzuki, E.; Shimizu, K. J. Mol. Struct. 2005, 738, 165-170. (CH₃NC).
- (a) Moran, S.; Ellis, H. B., Jr.; DeFrees, D. J.; McLean, A. D.; Ellison, G. B. *J. Am. Chem. Soc.* **1987**, *109*, 5996-6003. (b) Svejda, P.; Volman, D. H. *J. Phys. Chem.* **1970**, *74*, 1872-1875. (c) Egland, R. J.; Symons, M. R. C. *J. Chem. Soc. A* **1970**, *5*, 1326-1329. (H₂CCN).
- (a) Moran, S.; Ellis, H. B., Jr.; DeFrees, D. J.; McLean, A. D.; Paulson, S. E.; Ellison, G. B. *J. Am. Chem. Soc.* **1987**, *109*, 6004-6010. (b) Hirao, T.; Ozeki, H.; Saito, S.; Yamamoto, S. *J. Chem. Phys.* **2007**, *127*, 134312-1-7. (H₂CNC).
- (a) Maier, G.; Reisenauser, H. P.; Rademacher, K. *Chem. Eur. J.* 1998, *4*, 1957-1963. (b) Dendramis, A.; Leroi, G. E. *J. Chem. Phys.* 1977, *66*, 4334-4341. (c) Nimlos, M. R.; Davico, G.; Geise, C. M.; Wenthold, P. G.; Blanksby, W. C.; Lineberger, S. J.; Hadad, C. M.; Petersson, G. A.; Ellison, G. B. *J. Chem. Phys.* 2002, *117*, 4323-4340. (d) Jacox, M. E. *J. Phys. Chem. Ref. Data* 2003, *32*, 1-441. (HCCN, HCNC, & cyc-HCNC).
- (a) Jacox, M. E. Chem. Phys. 1979, 43, 157-172. (b) Jacox, M. E.; Milligan, D. E. J. Am. Chem. Soc. 1963, 85, 278-282.
- Maier, G.; Schmidt, C.; Reisenauer, H. P.; Endlein, E.; Becker, D; Eckwert, J.; Hess, B. A.; Schaad, L. J. *Chem. Ber.* **1993**, *126*, 2337-2352.
- 8. Cho, H.-G.; Andrews, L. J. Phys. Chem. 2011, 115, 8638-8642.
- Andrews, L.; Kushto, G. P.; Zhou, M.; Willson, S. P.; Souter, P. F. J. Chem. Phys. 1999, 110, 4457-4466.
- (a) Andrews, L.; Cho, H.-G. Organometallics 2006, 25, 4040-4053. (Review article). (b) Cho, H.-G.; Andrews, L. J. Am. Chem. Soc. 2008, 130, 15836-15841. (c) Zhou, M.; Chen, M.; Zhang, L.; Lu, H. J. Phys. Chem. A 2002, 106, 9017-9023. (d) Cho, H.-G.; Andrews, L. Dalton Trans. 2011, 40, 11115-11124.
- (a) Andrews, L.; Citra, A. *Chem. Rev.* 2002, *102*, 885-911, and references therein. (b) Andrews, L. *Chem. Soc. Rev.* 2004, *33*, 123-132, and references therein.
- (a) Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2010, 114, 891-897.
 (b) Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2010, 114, 5997-6006.
 (c) Cho, H.-G.; Andrews, L. J. Organomet. Chem. 2012, 703, 25-33.
 (d) Cho, H.-G.; Andrews, L. Organometallics 2011, 31, 535-544.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G; Barone, V.; Mennucci, B.; Petersson, G. A.; *et al. Gaussian 09*, Revision A.02, Gaussian, Inc.: Wallingford, CT, 2009.
- (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, Y.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
- Burke, K.; Perdew, J. P.; Wang, Y. In *Electronic Density Functional Theory: Recent Progress and New Directions*; Dobson, J. F., Vignale, G., Das, M. P., Eds.; Plenum: 1998.
- 16. Fukui, K. Acc. Chem. Res. 1981, 14, 363-368.