DOI QR코드

DOI QR Code

SAPO-11을 이용한 억새와 Random Polypropylene의 촉매 열분해

Catalytic Pyrolysis of Miscanthus and Random Polypropylene over SAPO-11

  • 강현구 (서울시립대학교 에너지환경시스템공학과) ;
  • 유미진 (서울시립대학교 에너지환경시스템공학과) ;
  • 박성훈 (순천대학교 환경공학과) ;
  • 전종기 (공주대학교 화학공학과) ;
  • 김상채 (목포대학교 환경교육과) ;
  • 박영권 (서울시립대학교 에너지환경시스템공학과)
  • Kang, Hyeon Koo (Graduate School of Energy and Environ. System Eng., University of Seoul) ;
  • Yu, Mi Jin (Graduate School of Energy and Environ. System Eng., University of Seoul) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Sang-Chai (Department of Environmental Education, Mokpo National University) ;
  • Park, Young-Kwon (Graduate School of Energy and Environ. System Eng., University of Seoul)
  • 투고 : 2012.12.14
  • 심사 : 2013.01.26
  • 발행 : 2013.05.25

초록

SAPO-11을 억새와 random polypropylene(random PP)의 촉매 열분해에 최초로 적용하였다. 열중량 분석 결과 SAPO-11은 억새의 탈수 반응을 촉진시키고, char의 생성을 억제하는 것으로 나타났다. Random PP의 열분해 결과, random PP의 분해온도와 활성화에너지는 촉매를 사용함에 따라 크게 감소하였다. 억새의 무촉매 열분해 반응에 의해 생성되는 oxygenate 생성물들 중에서 levoglucosan이 주 생성물이었다. SAPO-11 촉매 열분해 결과, 상당 부분의 levoglucosan이 furans, phenolics, aromatics 등의 부가가치가 큰 화합물로 전환하였다. 반면, random PP는 가솔린, 디젤 범위의 탄화수소를 생성하였다.

SAPO-11 was applied for the first time to the catalytic pyrolysis of miscanthus and random polypropylene (random PP). Thermogravimetric analysis confirmed that SAPO-11 promoted the dehydration of miscanthus while suppressing the formation of char. In the pyrolysis of random PP, the decomposition temperature and activation energy were reduced by using a catalyst. A large fraction of levoglucosan, which was the main oxygenate product from the non-catalytic pyrolysis of miscanthus, was converted to high value-added products, such as furans, phenolics and aromatics using SAPO-34. The catalytic pyrolysis of random PP produced gasoline- and diesel-range hydrocarbons.

키워드

과제정보

연구 과제 주관 기관 : University of Seoul

참고문헌

  1. C. H. Ko, S. H. Park, J. K. Jeon, D. J. Suh, K. E. Jeong, and Y. K. Park, Korean J. Chem. Eng., 29, 1657 (2012). https://doi.org/10.1007/s11814-012-0199-5
  2. H. J. Park, J. K. Jeon, D. J. Suh, Y. W. Suh, H. S. Heo, and Y. K. Park, Catal. Surv. Asia, 15, 161 (2011). https://doi.org/10.1007/s10563-011-9119-7
  3. M. J. Jeon, S. J. Choi, K. S. Yoo, C. Ryu, S. H. Park, J. M. Lee, J. K. Jeon, Y. K. Park, and S. Kim, Korean J. Chem. Eng., 28, 497 (2011). https://doi.org/10.1007/s11814-010-0497-8
  4. H. J. Park, H. S. Heo, K. S. Yoo, J. H. Yim, J. M. Sohn, K. E. Jeong, J. K. Jeon, and Y. K. Park, J. Ind. Eng. Chem., 17, 549 (2011). https://doi.org/10.1016/j.jiec.2010.11.002
  5. H. S. Heo, H. J. Park, J. H. Yim, J. M. Sohn, J. Park, S. S. Kim, C. Ryu, J. K. Jeon, and Y. K. Park, Bioresour. Technol., 101, 3672 (2010). https://doi.org/10.1016/j.biortech.2009.12.078
  6. A. Sørensen, P. J. Teller, T. Hilstrøm, and B. K. Ahring, Bioresour. Technol., 99, 6602 (2008). https://doi.org/10.1016/j.biortech.2007.09.091
  7. H. J. Park, K. H. Park, J. K. Jeon, J. N. Kim, R. Ryoo, K. E. Jeong, S. H. Park, and Y. K. Park, Fuel, 97, 379 (2012). https://doi.org/10.1016/j.fuel.2012.01.075
  8. S. J. Choi, Y. K. Park, K. E. Jeong, T. W. Kim, H. J. Chae, S. H. Park, J. K. Jeon, and S. S. Kim, Korean J. Chem. Eng., 27, 1446 (2010). https://doi.org/10.1007/s11814-010-0281-9
  9. H. J. Park, Y. K. Park, J. I. Dong, J. K. Jeon, J. H. Yim, and K. E. Jeong, Res. Chem. Intermed., 34, 727 (2008). https://doi.org/10.1007/BF03036931
  10. J. W. Kim, S. H. Lee, S. S. Kim, S. H. Park, J. K. Jeon, and Y. K. Park, Korean J. Chem. Eng., 28, 1867 (2011). https://doi.org/10.1007/s11814-011-0176-4
  11. Y. K. Park, S. J. Kim, C. N. You, J. Cho, S. J. Lee, J. H. Lee, and J. K. Jeon, J. Ind. Eng. Chem., 17 186 (2011). https://doi.org/10.1016/j.jiec.2011.02.007
  12. Y. M. Kim, H. W. Lee, S. H. Lee, S. S. Kim, S. H. Park, J. K. Jeon, S. Kim, and Y. K. Park, Korean J. Chem. Eng., 28, 2012 (2011). https://doi.org/10.1007/s11814-011-0177-3
  13. Z. Luo, S. Wang, and X. Guo, J. Anal. Appl. Pyrolysis, 95, 112 (2012). https://doi.org/10.1016/j.jaap.2012.01.014
  14. E. Antonakou, A. Lappas, M. H. Nilsen, A. Bouzga, and M. Stocker, Fuel, 85, 2202 (2006). https://doi.org/10.1016/j.fuel.2006.03.021
  15. J. Adam, E. Antonakou, A. Lappas, M. St cker, M. H. Nilsen, A. Bouzga, J. E. Hustad, and G. Oye, Micropor. Mesopor. Mater., 96, 93 (2006). https://doi.org/10.1016/j.micromeso.2006.06.021
  16. H. W. Lee, T. W. Kim, S. H. Park, J. K. Jeon, D. J. Suh, and Y. K. Park, J. Nanosci. Nanotechnol., 13, 2640 (2013). https://doi.org/10.1166/jnn.2013.7421
  17. M. J. Jeon, J. K. Jeon, D. J. Suh, S. H. Park, Y. J. Sa, S. H. Joo, and Y. K. Park, Catal. Today, 204, 170 (2013). https://doi.org/10.1016/j.cattod.2012.07.039
  18. Y. K. Park, B. R. Jeon, S. H. Park, J. K. Jeon, D. J. Suh, S. S. Kim, and K. E. Jeong, J. Nanosci. Nanotechnol., Accepted.
  19. Y. T. Cheng and G. W. Huber, ACS Catal., 1, 611 (2011). https://doi.org/10.1021/cs200103j
  20. S. Tsubaki, M. Sakamoto, and J. I. Azuma, Food Chem., 123, 1255 (2010). https://doi.org/10.1016/j.foodchem.2010.05.088
  21. K. Murata, Y. Liu, M. Inaba, and I. Takahara, J. Anal. Appl. Pyrolysis, 94, 75 (2012). https://doi.org/10.1016/j.jaap.2011.11.008

피인용 문헌

  1. Catalytic Pyrolysis of Cellulose over SAPO-11 Using Py-GC/MS vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2399