DOI QR코드

DOI QR Code

Effect of Fillers on Dispersion of Carbon Nanotubes in a Twin-Screw Extruder

이축압출기에서 카본나노튜브의 분산에 대한 충전제 효과

  • Hong, Seung Soo (Department of Polymer Science and Engineering, Inha University) ;
  • Shin, Ji Hee (Department of Polymer Science and Engineering, Inha University) ;
  • Song, Kwon Bin (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang Hee (Department of Polymer Science and Engineering, Inha University)
  • 홍승수 (인하대학교 고분자공학과) ;
  • 신지희 (인하대학교 고분자공학과) ;
  • 송권빈 (인하대학교 고분자공학과) ;
  • 이광희 (인하대학교 고분자공학과)
  • Received : 2012.10.25
  • Accepted : 2013.02.13
  • Published : 2013.05.25

Abstract

In this study, it was attempted to disperse carbon nanotubes (CNTs) in a polymer matrix using a twin-screw extruder which was good for dispersing fillers of micron sizes but not suitable for dispersing nanometer-sized materials. Improved dispersion of CNTs could be achieved by the addition of inorganic fillers with different geometrical shapes. An increase in the matrix viscosity provided a high shear stress on aggregated CNTs, leading to a good dispersion of CNTs. The presence of the inorganic fillers was supposed to suppress the re-aggregation of CNTs in the regions where a lower shear stress was applied. As a result, the CNTs dispersion was well stabilized.

마이크론 크기의 입자를 분산하기에 적합하나 나노 크기의 입자를 분산하기에는 미흡한 이축압출기를 사용하여 카본나노튜브(CNT) 분산을 시도하였다. 카본나노튜브 분산성 향상을 위해 서로 다른 입자 형상을 가지는 무기 충전제를 부가하였다. 무기 충전제 첨가에 따른 점도 증가는 상대적으로 높은 전단력을 유도하여 응집된 카본나노튜브 입자의 분산을 도모하였다. 또한 충전제 입자들은 전단력이 미치지 않는 구역에서 일어나는 카본나노튜브의 재응집을 억제함으로써 분산 안정화에 기여하였다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. A. J. Crosby and J. Y. Lee, Polym. Rev., 47, 220 (2007).
  2. T. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, Macromolecules, 37, 7214 (2004). https://doi.org/10.1021/ma049132t
  3. L. Vaisman, H. D. Wagner, and G. Marom, Adv. Colloid Interface Sci., 128, 40 (2006).
  4. T. Villmow, P. Potschke, S. Pegel, L. Haussler, and B. Kretzschmar, Polymer, 49, 3501 (2008).
  5. S. Pegel, P. Potschke, G. Petzold, I. Alig, S. M. Dudkin, and D. Lellinger, Polymer, 49, 975 (2008).
  6. T. E. Chang, A. Kisliuk, S. M. Rhodes, W. J. Brittain, and A. P. Sokolov, Polymer, 47, 7742 (2006).
  7. T. Villmow, B. Kretzschmar, and P. Potschke, Compos. Sci. Technol., 70, 2046 (2010).
  8. N. A. Frankel and A. Acrivos, Chem. Eng. Sci., 22, 850 (1967).
  9. M. Mooney, J. Colloid Sci., 6, 162 (1951). https://doi.org/10.1016/0095-8522(51)90036-0
  10. D. G. Thomas, J. Colloid Sci., 20, 275 (1965).
  11. T. Kitano, T. Kataoka, and T. Shirota, Rheol. Acta, 20, 208 (1981).
  12. T. Kataoka, T. Kitano, M. Sasahara, and K. Nishijima, Rheol. Acta, 17, 153 (1978).
  13. S. H. Maron and P. E. Pierce, J. Colloid Sci., 11, 80 (1956). https://doi.org/10.1016/0095-8522(56)90023-X
  14. R. T. Fenner, Polymer, 18, 632 (1977).
  15. G. R. Kasaliwal, A. Goldel, P. Potschke, and G. Heinrich, Polymer, 52 1029 (2011).

Cited by

  1. Influence of Screw Rotors Tip Angle on Mixing Performance for One Novel Twin-screw Kneader vol.39, pp.3, 2015, https://doi.org/10.7317/pk.2015.39.3.441