DOI QR코드

DOI QR Code

Chemoenzymatic Synthesis of H-shaped Amphiphilic Pentablock Copolymer and Its Self-assembly Behavior

H-형태 양친매성 펜타블록 공중합체의 화학효소적 합성과 자기회합거동 평가

  • Chen, Peng (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University) ;
  • Li, Ya-Peng (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University) ;
  • Li, Cai-Jin (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University) ;
  • Meng, Xin-Lei (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University) ;
  • Zhang, Bao (Changchun Institute of Applied Chemistry Chinese Academy of Sciences) ;
  • Zhu, Ming (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University) ;
  • Liu, Yan-Jing (The Affiliated hospital, Changchun University of Chinese Medicine) ;
  • Wang, Jing-Yuan (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University)
  • Received : 2012.10.23
  • Accepted : 2013.01.08
  • Published : 2013.05.25

Abstract

H-shaped amphiphilic pentablock copolymers $(PSt)_2-b-PCL-b-PEO-b-PCL-b-(PSt)_2$ was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (${\varepsilon}$-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.

Keywords

References

  1. C. S. Cho, Y. I. Jeong, S. H. Kim, J. W. Nah, Y. M. Lee, I. K. Kang, and Y. K. Sung, Polymer(Korea), 7, 203 (1999).
  2. M. Prabaharan, J. J. Grailer, S. Pilla, D. A. Steeber, and S. Q. Gong, Biomaterials, 30, 6065 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.048
  3. A. Blanazs, S. P. Armes, and A. J. Ryan, Macromol. Rapid Commun., 30, 267 (2009). https://doi.org/10.1002/marc.200800713
  4. Y. J. Kim, Y. K. Sung, A. Z. Pial, and S. W. Kim, Polymer(Korea), 5, 214 (1997).
  5. E. Ruckenstein and H. M. Zhang, Macromolecules, 31, 9127 (1998). https://doi.org/10.1021/ma9812534
  6. A. Hirao, M. Hayashi, and N. Haraguchi, Macromol. Rapid Commun., 21, 1171 (2000). https://doi.org/10.1002/1521-3927(20001101)21:17<1171::AID-MARC1171>3.0.CO;2-C
  7. A. Hirao, T. Higashihara, and K. Inoue, Macromolecules, 41, 3579 (2008). https://doi.org/10.1021/ma800146p
  8. T. Yoshida, K I. Seno, S. Kanaoka, and S. Aoshima, J. Polym. Sci. Part A: Polym. Chem., 43, 1155 (2005). https://doi.org/10.1002/pola.20589
  9. S. Aoshima, S. Sugihara, M. Shibayama, and S. Kanaoka, Macromol. Symp., 215, 151 (2004). https://doi.org/10.1002/masy.200451113
  10. S. Aoshima and S. Sugihara, J. Polym. Sci. Part A: Polym. Chem., 38, 3962 (2000). https://doi.org/10.1002/1099-0518(20001101)38:21<3962::AID-POLA130>3.0.CO;2-9
  11. M. F. Cunningham, Prog. Polym. Sci., 33, 365 (2008). https://doi.org/10.1016/j.progpolymsci.2007.11.002
  12. K. Matyjaszewski and J. Spanswick, Materialstoday, 8, 26 (2005).
  13. J. Y. Lee, J. H. Kim, M. J. Kim, and M. K. Jin, Polymer(Korea), 7, 229 (1999).
  14. P. Gopalan, Y. M. Zhang, X. F. Li, U. Wiesner, and C. K. Ober, Macromolecules, 36, 3357 (2003). https://doi.org/10.1021/ma021573u
  15. A. J. Pasquale and T. E. Long, J. Polym. Sci. Part A: Polym. Chem., 39, 216 (2001). https://doi.org/10.1002/1099-0518(20010101)39:1<216::AID-POLA240>3.0.CO;2-Z
  16. V. Coessens, T. Pintauer, and K. Matyjaszewski, Prog. Polym. Sci., 26, 337 (2001). https://doi.org/10.1016/S0079-6700(01)00003-X
  17. N. V. Tsarevsky and K. Matyjaszewski, Chem. Rev., 107, 2270 (2007). https://doi.org/10.1021/cr050947p
  18. M. Licciardi, Y. Tang, N. C. Billingham, and S. P. Armes, Biomacromolecules, 6, 1085 (2005). https://doi.org/10.1021/bm049271i
  19. A. W. York, S. E. Kirkland, and C. L. McCormick, Adv. Drug Deliver. Rev., 60, 1018 (2008). https://doi.org/10.1016/j.addr.2008.02.006
  20. C. Z. Li and B. C. Benicewicz, Macromolecules, 38, 5929 (2005). https://doi.org/10.1021/ma050216r
  21. A. B. Lowe and C. L. McCormick, Prog. Polym. Sci., 3, 283 (2007).
  22. A. WellsF, Org. Process. Res. Dev., 10, 678 (2006). https://doi.org/10.1021/op060006u
  23. J. T. Scarpello, D. Nair, L. M. Freitas dos Santos, L. S. White, and A. G. Livingston, J. Membr. Sci., 203, 71 (2002). https://doi.org/10.1016/S0376-7388(01)00751-7
  24. C. Torque, H. Bricout, F. Hapiot, and E. Monflier, Tetrahedron, 60, 6487 (2004). https://doi.org/10.1016/j.tet.2004.06.028
  25. F. López-Gallego, L. Betancor, A. Hidalgo, C. Mateo, J. M. Guisán, and R. Fernández-Lafuente, Biotechnol., 111, 219 (2004).
  26. J. B. Van Beilen and Z. Li, Curr. Opin. Biotechnol., 13, 338 (2002). https://doi.org/10.1016/S0958-1669(02)00334-8
  27. Y. Murakami, R. Hoshi, and A. Hirata, J. Mol. Catal. B: Enzym., 22, 79 (2003). https://doi.org/10.1016/S1381-1177(03)00009-2
  28. A. E. Ivanov, E. Edink, A. Kumar, I. Y. Galaev, A. F. Arendsen, A. Bruggink, and B. Mattiasson, Biotechnol. Progr., 19, 1167 (2003).
  29. R. Konwarh, D. Kalita, C. Mahanta, M. Mandal, and N. Karak, Appl. Microbiol. Biotechnol., 87, 1983 (2010). https://doi.org/10.1007/s00253-010-2658-4
  30. A. C. Albertsson and R. K. Srivastava, Adv. Drug Deliver. Rev., 60, 1077 (2008). https://doi.org/10.1016/j.addr.2008.02.007
  31. A. Makino and S. Kobayashi, J. Polym. Sci. Part A: Polym. Chem., 48, 1251 (2010). https://doi.org/10.1002/pola.23906
  32. X. H. Yu, R. X. Zhuo, J. Feng, and J. Liao, Eur. Polym. J., 40, 2445 (2004). https://doi.org/10.1016/j.eurpolymj.2004.06.026
  33. D. Le Garrec, S. Gori, L. Luo, D. Lessard, D. C. Smith, M. A. Yessine, M. Ranger, and J. C. Leroux, J. Control. Release, 99, 83 (2004). https://doi.org/10.1016/j.jconrel.2004.06.018
  34. E. K. Park, S. Y. Kim, S. B. Lee, and Y. M. Lee, J. Control. Release, 109, 158 (2005). https://doi.org/10.1016/j.jconrel.2005.09.039
  35. R. K. O'Reilly, C. J. Hawker, and K. L. Wooley, Chem. Soc. Rev., 35, 1068 (2006). https://doi.org/10.1039/b514858h
  36. S. Villarroya, J. X. Zhou, K. J. Thurecht, and S. M. Howdle, Macromolecules, 39, 9080 (2006). https://doi.org/10.1021/ma061068n
  37. M. De Geus, A. R. A. Palmans, C. J. Duxbury, S. Villarroya, S. M. Howdle, and A. Heise, Polymer Biocatalysis and Biomaterials II, 14, 216 (2008).
  38. U. Meyer, A. R. A. Palmans, T. Loontjens, and A. Heise, Macromolecules, 35, 2873 (2002). https://doi.org/10.1021/ma011929m
  39. Y. L. Cai, Y. Q. Tang, and S. P. Armes, Macromolecules, 37, 9728 (2004). https://doi.org/10.1021/ma0487756
  40. K. Sha, L. Qin, D. S. Li, X. T. Liu, and J. Y. Wang, Polym. Bull., 54, 1 (2005). https://doi.org/10.1007/s00289-005-0341-1
  41. K. Sha, D. S. Li, Y. P. Li, B. Zhang, and J. Y. Wang, Macromolecules, 41, 361 (2008). https://doi.org/10.1021/ma0707234
  42. W. Wang, Y. P. Li, Y. L. Zhao, B. Zhang, and J. Y. Wang, Acta Polym. Sin., 2, 199 (2010).
  43. B. Zhang, Y. P. Li, J. H. Sun, S. W. Wang, Y. L. Zhao, and Z. Y. Wu, Polym. Int., 58, 752 (2009). https://doi.org/10.1002/pi.2588
  44. D. Wang, B. Zhang, Y. P. Li, and J. H. Sun, Chem. J. Chinese. U., 29, 1479 (2008).
  45. B. Zhang, Y. P. Li, P. Ai, Z. P. Sa, Y. L. Zhao, M. Li, D. Wang, and K. Sha, J. Polym. Sci. Part A: Polym. Chem., 47, 5509 (2009). https://doi.org/10.1002/pola.23602