DOI QR코드

DOI QR Code

Effects of Accelerators on the Vulcanization Properties of Silica vs. Carbon Black Filled Natural Rubber Compounds

촉진제가 실리카와 카본블랙으로 충전된 천연고무 복합소재의 가황 특성에 미치는 영향

  • Received : 2012.08.16
  • Accepted : 2013.02.22
  • Published : 2013.05.25

Abstract

Thiuram (DPTT, TMTD), thiazole (MBT, MBTS), sulfenamide (CBS, NOBS), and zinc containing thiuram (dithiocarbamate) (ZDBC) type accelerators were added into silica and carbon black filled natural rubber (NR) compounds. Their effects on vulcanization time and rate were compared. The vulcanization rate of thiuram type accelerator added compounds showed the fastest rate, followed by thiazole and sulfenamide types. Silica filled natural rubber (NR) compounds showed a slower vulcanization time ($t_{s2}$, $t_{10}$, $t_{90}$) and lower cure rate index (CRI) than carbon black filled ones upon each accelerator.

화학적 구조가 다른 thiuram계 TMTD(tetramethyl thiuram disulfide), DPTT(dipenta-methylene thiuram tetrasulfide), thiazole계 MBT(2-mercapto benzothiazole), MBTS(2,2-dithiobis(benzo-thiazole)), sulfenamide계 CBS(n-cyclohexyl benzothiazyl-2-sulfenamide), NOBS(n-oxydiethylene benzo-thiazyl-2-sulfenamide), 아연이 포함된 thiuram계 ZDBC(zinc di-n-butyl-dithiocarbamate)를 사용하여 각각의 촉진제가 실리카와 카본블랙으로 충전된 천연 고무 복합소재의 가황 속도 및 가황 지수에 미치는 영향을 비교 평가하였다. 양 시스템에서 가황 속도는 thiuram계, thiazole계, sulfenamide계의 순서로 동일한 경향을 보였다. 각 촉진제에 대하여 실리카 컴파운드는 카본블랙 컴파운드에 비해 $t_{s2}$, $t_{10}$, $t_{90}$에 도달하는 시간이 느리게 나타났으며 느린 가황 지수(CRI)를 나타내었다.

Keywords

References

  1. C. Goodyear, U.S. Patent 3,633 (1844).
  2. T. Hancock, U.K. Patent 9,952 (1843).
  3. L. Bateman, C. G. Moore, M. Porter, and B. Saville, The Chemistry and Physics of Rubber like Substances, L. Bateman, Editor, John Wiley and Sons, New York, Chapter 19, 1963.
  4. S. B. Molony, U.S. Patent 1,343,224 (1920).
  5. A. Y. Coran, Science and Technology of Rubber, 3rd Edition, J. E. Mark, B. Erman, and F. R. Eirich, Editors, Academic Press, Chapter 7, New York, 2005.
  6. C. W. Bedford, U.S. Patent 1,371,662 (1921).
  7. L. B. Sebrell and C. W. Bedford, U.S. Patent 1,544,687 (1925).
  8. G. Bruni and E. Romani, Indian Rubber Journal, 62, 63 (1921).
  9. M. W. Harman, U.S. Patent 2,100,692 (1937).
  10. A. Y. Coran and J. E. Kerwood, U.S. Patent 3,546,185 (1970).
  11. F. Thurn, K. Burmester, J. Pochert, and S. Wolff, U.S. Patent 4,517,336 (1985).
  12. R. Rauline, Eur. Patent EP0501, 227 (1992).
  13. M. P. Wagner, Rubber Chem. Technol., 49, 703 (1976). https://doi.org/10.5254/1.3534979
  14. R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton, 2009.
  15. K. J. Kim and J. L. White, Thermoplastic and Rubber Compounds, Hanser, Munch, 2008.
  16. A. I. Isayev, C. K. Hong, and K. J. Kim, Rubber Chem. Technol., 76, 923 (2003). https://doi.org/10.5254/1.3547782
  17. K. J. Kim and J. L. White, J. Ind. Eng. Chem., 6, 372 (2000).
  18. S. M. Kim, H. W. Cho, J. W. Kim, and K. J. Kim, Elastomers and Composites, 45, 223 (2010).
  19. S. Wolff, Kautsch. Gummi Kunstst., 34, 280 (1981).
  20. S. Wolff, Rubber Chem. Technol., 55, 967 (1982). https://doi.org/10.5254/1.3535926
  21. E. P. Plueddemann, Silane Coupling Agents, Plenum Press, New York, 1982.
  22. K. J. Kim and J. VanderKooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
  23. K. J. Kim and J. L. White, J. Ind. Eng. Chem., 7, 50 (2001).
  24. K. J. Kim, Elastomers and Composites, 44, 134 (2009).
  25. D. K. Jeon and K. J. Kim, Elastomers and Composites, 44, 252 (2009).
  26. K. J. Kim, J. Appl. Polym. Sci., 124, 2937 (2012). https://doi.org/10.1002/app.35329
  27. T. T. N. Dang, J. K. Kim, and K. J. Kim, Int. Polym. Proc., 26, 368 (2011). https://doi.org/10.3139/217.2352
  28. K. J. Kim, Carbon Letters, 10, 101 (2009). https://doi.org/10.5714/CL.2009.10.2.101
  29. K. J. Kim, Carbon Letters, 10, 109 (2009). https://doi.org/10.5714/CL.2009.10.2.109
  30. K. J. Kim, Carbon Letters, 10, 190 (2009). https://doi.org/10.5714/CL.2009.10.3.190
  31. K. J. Kim and J. VanderKooi, Int. Polym. Proc., 17, 192 (2002). https://doi.org/10.3139/217.1700
  32. K. J. Kim and J. VanderKooi, J. Ind. Eng. Chem., 10, 772 (2004).
  33. K. J. Kim, J. Appl. Polym. Sci., 116, 237 (2010). https://doi.org/10.1002/app.31433
  34. T. T. N. Dang, J. K. Kim, and K. J. Kim, Int. Polym. Proc., 24, 359 (2009). https://doi.org/10.3139/217.2273
  35. K. J. Kim and J. VanderKooi, Composite Interfaces, 11, 471 (2004). https://doi.org/10.1163/1568554042722946
  36. K. J. Kim and J. VanderKooi, Rubber Chem. Technol., 78, 84 (2005). https://doi.org/10.5254/1.3547875
  37. K. J. Kim and J. VanderKooi, J. Appl. Polym. Sci., 95, 623 (2005). https://doi.org/10.1002/app.21373
  38. S. M. Kim, C. S. Nam, and K. J. Kim, Appl. Chem. Eng., 22, 144 (2011).
  39. C. Y. Choi, S. M. Kim, Y. H. Park, M. K. Jang, J. W. Nah, and K. J. Kim, Appl. Chem. Eng., 22, 411 (2011).
  40. T. T. N. Dang, J. K. Kim, S. H. Lee, and K. J. Kim, Compos. Interf., 18, 151 (2011). https://doi.org/10.1163/092764411X567558
  41. T. T. N. Dang, J. K. Kim, and K. J. Kim, J. Vinyl & Additive Technol., 16, 254 (2010). https://doi.org/10.1002/vnl.20240
  42. O. Lorenz and E. Echte, Rubber Chem. Technol., 31, 117 (1958). https://doi.org/10.5254/1.3542252
  43. W. Scheele and M. Cherubim, Rubber Chem. Technol., 34, 606 (1961). https://doi.org/10.5254/1.3540232
  44. E. Morita and E. J. Young, Rubber Chem. Technol., 36, 844 (1963). https://doi.org/10.5254/1.3539615
  45. S. K. Bhatnagar and S. Banerjee, Rubber Chem. Technol., 42, 1366 (1969). https://doi.org/10.5254/1.3539304
  46. G. Mathew, P. V. Pillai, and A. P. Kuriakose, Rubber Chem. Technol., 65, 277 (1992). https://doi.org/10.5254/1.3538611
  47. P. Ghosh, S. Katare, P. Patkar, J. M. Caruthers, and V. Venkatasubramanian, Rubber Chem. Technol., 76, 592 (2003). https://doi.org/10.5254/1.3547762
  48. B. A. Dogadkin, V. Selyukova, Z. Tarasova, A. B. Dobromyslova, M. S. Feldshtein, and M. Kaplunov, Rubber Chem. Technol., 31, 348 (1958). https://doi.org/10.5254/1.3542283
  49. B. A. Dogadkin, O. N. Beliatskaya, A. B. Dobromyslova, and M. S. Feldshtein, Rubber Chem. Technol., 33, 361 (1960). https://doi.org/10.5254/1.3542152
  50. R. H. Campbell and R. W. Wise, Rubber Chem. Technol., 37, 635 (1964); 37, 650 (1964).
  51. A. Y. Coran, Rubber Chem. Technol., 37, 679 (1964). https://doi.org/10.5254/1.3540360
  52. A. Y. Coran, Rubber Chem. Technol., 38, 1 (1965). https://doi.org/10.5254/1.3535628
  53. N. Hewitt, in Compounding Precipitated Silica in Elastomers, William Andrew Inc., New York, Chapter 1 (2007).
  54. D. B. Russell, J. Am. Chem. Soc., presented at spring meeting (1966).
  55. W. B. Fred, Rubber Compounding: Principles, Material, and Techniques 2nd, Marcel Dekker, New York, 1993.
  56. H. M. Costa, L. L. Y. Visconte, R. C. R. Nunes, and C. R. G. Furtado, J. Appl. Polym. Sci., 87, 1405 (2003). https://doi.org/10.1002/app.11514
  57. P. Sae-Oui, C. Rakdee, and P. Thanmathorn, J. Appl. Polym. Sci., 83, 2485 (2002). https://doi.org/10.1002/app.10249
  58. B. Rattanasupa and W. K. Keawwattana, J. Nat. Sci., 41, 239 (2007).
  59. K. J. Kim and J. VanderKooi, Int. Polym. Proc., 19, 364 (2004). https://doi.org/10.3139/217.1844
  60. A. S. Hashim, B. A. Zahare, Y. Ikeda, and S. K. Ohjiya, Rubber Chem. Technol., 78, 289 (1998).
  61. J. Butler and P. K. Freakley, Rubber Chem. Technol., 65, 374 (1992). https://doi.org/10.5254/1.3538618

Cited by

  1. Optimization of Accelerator Mixing Ratio for EPDM Rubber Grommet to Improve Mountability Using Mixture Design vol.9, pp.13, 2013, https://doi.org/10.3390/app9132640