DOI QR코드

DOI QR Code

An Analysis of Relationship between Cushion Gas and Gas Withdrawal in Depleted Gas Reservoir as a Gas Storage

고갈가스전의 가스저장전 전환 시 쿠션가스와 가스재생산율과의 관계 분석

  • Han, Jeongmin (Gas Resources Technology Center, KOGAS R&D Division) ;
  • Kim, Joohyung (Dept. of Natural Resource and Environmental Engineering, Hanyang University) ;
  • Sung, Wonmo (Dept. of Natural Resource and Environmental Engineering, Hanyang University)
  • Received : 2013.01.15
  • Accepted : 2013.03.05
  • Published : 2013.04.30

Abstract

Depleted gas reservoir has been already explored and its geologic data, along with its reservoir properties, are already known through seismic exploration and drilling. Therefore it would be less difficult to develope a gas storage from depleted gas reservoir. Cushion gas which remains in the reservoir to maintain pressure affects withdrawal rate of working gas in underground gas storage. In this study, we attempted to investigate the relationship between cushion gas and withdrawal rate using a commercial simulator. From the analyses of the results, it is found that the minimum limit for a cycle of 5-month injection and 5-month withdrawal is 10 wells with 50% cushion gas, and 12 wells with 60% cushion gas for a cycle of 7-month injection and 3-month withdrawal.

고갈가스전은 저류층을 개발할 당시 충분한 탄성파 탐사 및 시추 등을 수행하기 때문에 지질구조와 저류층의 물성 등의 파악이 완료된 상태이므로 가스저장전으로의 전환이 용이하다. 이러한 고갈가스전을 가스저장전으로 전환 시 저류층의 압력을 유지하기 위한 쿠션가스는 재생산을 위해 주입된 워킹가스의 재생산율에 영향을 미친다. 본 연구에서는 쿠션가스와 가스재생산율과의 관계 및 재생산 사이클에 따른 적정 쿠션가스의 양을 분석하기 위해 가스저장전의 주입 및 재생산에 대한 시뮬레이션을 수행하였다. 주입 및 재생산 사이클은 5개월 주입 5개월 생산, 7개월 주입 3개월 생산 두 가지 경우에 대한 분석을 수행하였다. 본 시스템을 대상으로 수행한 분석결과, 5개월 주입 5개월 생산 사이클의 경우 최소 10개의 생산정으로 50%의 쿠션가스를 유지해야 안정적인 생산이 가능하였고, 7개월 주입 3개월 생산 사이클의 경우 12개의 생산정으로 60%의 쿠션가스를 유지해야 안정적인 재생산이 가능한 것으로 산출되었다.

Keywords

References

  1. Knepper, G.A., "Underground Storage Operations," Journal of Petroleum Technology, 49(10), 1112-1114, (1997) https://doi.org/10.2118/39101-JPT
  2. Katz, D. L. and Tek, M. R., "Overview on Underground Storage of Natural Gas," Journal of Petroleum Technology, 33(6), 403-414, (1981)
  3. Sung. W. M., Ryou, S. S., Ra, S. H., and Kwon, S. I., "The Interpretation of DST Data for Donghae-1 Gas Field, Block VI-1, Korea," Korean Journal of Chemical Engineering, 18(1), 67-74, (2001) https://doi.org/10.1007/BF02707200
  4. Knepper, Glenn A and Cuthbert, J. F., "Gas Storage Problems and Detection Methods," SPE Annual Technical Conference and Exhibition, 1-13, (1979)
  5. McVay, D. A., Spivey, J. P., and Holditch, S. A., "Optimizing Gas-Storage Reservoir Performance," SPE Reservoir Evaluation & Engineering, 4(3), 173-178, (2001) https://doi.org/10.2118/71867-PA
  6. Brown, K. G., Frantz, J. H., Sawyer, W. K., and Heckman, G. C., "Assessment of Remediation Treatments in Underground Gas Storage Wells," SPE Annual Technical Conference and Exhibition, 1-7, (2003)
  7. Abou-Sayed, A. S., Zaki, K. and Summers, C., "Management of Sour Gas by Underground Injection - Assessment, Challenges and Recommendations," SPE International Conference on Health, Safety, and Environment in Oil and Gas Exploration and Production, 1-11, (2004)
  8. Rodriguez, J. J., Santistevan, P. and Repsol, "Diadema Project - Underground Gas Storage in a Depleted Field, in Patagonia, Argentina," SPE Latin American and Caribbean Petroleum Engineering Conference, 1-6, (2001)
  9. Lee, Y. S., Park, Y. C., Kwon, S. I. and Sung, W. M., "The Feasibility Study for $CO_2$ Sequestration into Deep Saline Aquifer at Gorae-V Structure in Korea," Journal of Korean Society for Geosystem Engineering, 45(4), 381-393, (2008)
  10. Baird, J.L., "Clay Basin Storage Project - Development of a Nearly Depleted Gas Reservoir to Gas Storage," SPE Rocky Mountain Regional Meeting, 1-8, (1978)