DOI QR코드

DOI QR Code

The Study of Mechanical Properties of Degraded Compacted Graphite Iron(CGI) Under 873~1273 K

873~1273 K에서 열화된 강화흑연강의 기계적 특성 연구

  • Received : 2013.02.27
  • Accepted : 2013.04.12
  • Published : 2013.04.30

Abstract

Compacted graphite iron(CGI), also known as vermicular graphite iron, is a metal which is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently compacted graphite iron has been used for diesel engine blocks. Considering that using in exhaust manifold of the diesel engine, CGI340 was conducted the heat treatment during 1 hour to 96 hours from 873 to 1273 K. Mechanical characteristics were evaluated. The obtained results are as follows; The tensile strength of the heat treated specimens showed overall lower tensile strength than that of the base metal. Tensile strength decreases with increasing of heat treatment time, and the higher heat treatment temperature and the longer time, were more reduced. The fatigue limit by the ultrasonic fatigue test was approximately 130 MPa of base metal, 100 MPa of 1173 K (96 hrs) specimen, respectively. The hardness decreases with increasing heat treatment time, and the higher the heat treatment temperature was lowered hardness distribution. In CGI340, average hardness of nodular graphite was 120 Hv, average hardness of vermicular graphite was 114 Hv. This showed lower hardness than the base structure ferrite. The nodular graphite and vermicular graphite according to the heat treatment temperature and time didn't have a consistent change. However, the grain size of base structure grew with increasing of heat treatment time.

벌레 모양 흑연철로 알려진 강화흑연강(CGI)은 주철보다 더 강하고 더 가벼운 것이 요구되는 응용제품에서 인기를 얻고 있는 금속이다. 최근 강화흑연강 디젤엔진 블록에 사용되고 있다. 본 연구에서는 디젤엔진의 배기 매니폴드에 사용되는 것을 고려하여, 873~1273 K에서 1~96 시간 열처리를 실시하여 CGI340의 기계적 특성을 평가하였다. 열처리를 실시한 시험편의 인장강도는 모재에 비하여 전체적으로 낮은 인장강도를 나타내었다. 열처리 시간이 증가할수록 인장강도가 감소하였으며, 열처리 온도가 높고 시간이 길어질수록 더 많이 감소하였다. 초음파 피로시험에 의한 피로한도는 모재는 약 130 MPa, 1173 K(96 hrs) 시험편은 약 100 MPa을 나타내었다. 경도는 열처리 시간이 증가할수록 감소하였으며, 열처리 온도가 높을수록 경도의 분포가 낮아졌다. 그리고 CGI340에 분포하는 구상흑연의 평균경도는 120 Hv, 벌레 모양 흑연의 평균경도는 114 Hv로 기지조직인 페라이트보다 낮은 경도를 나타내었다. 열처리 온도 및 시간에 따라서 구상흑연 및 벌레 모양 흑연에 대한 변화는 일정하지 않지만, 열처리 시간이 길어짐에 따라 기지조직의 결정립이 커지는 것을 확인하였다.

Keywords

References

  1. I. C. Hughes and J. Powell, "Compacted graphite irons - high quality engineering materials in the cast iron family," SAE Paper, 840772 (1984)
  2. S. Dawson, "Compacted graphite iron: Cast iron makes a comeback," The Journal of The Minerals, Metals & Materials Society, Vol. 46, pp 44-47 (1994)
  3. C. R. Loper, M. J. Lalich, H. K. Park and A. M. Gyarmaty, "The relationship of microstructure to mechanical properties in compacted graphite irons," AFS Transactions 80-160, pp. 313-330 (1980)
  4. E. Nechtelberger, "The Properties of Cast Iron up to $500^{\circ}C$," English edition published in 1980 by Technicopy Ltd, England; German edition published in 1977 by Fachverlag Schiele und Schon GmbH, Germany (1977)
  5. K. Rohig, "Gusseisen mit vermicular graphit-herstellung, eigenschaften, anwendug," Konstruieren + Giessen, Vol. 16, pp. 7-27 (1991)
  6. D. M. Stefanescu, R. Hummer and E. Nechtelberger, "Compacted graphite irons," Metals Handbook, Ninth Edition, Vol. 15, pp. 667-677 (1988)
  7. T. Okamoto, A. Kagawa, K. Kamei and H. Matsumoto, "Effect of graphite shape on thermal conductivity, electrical resistivity, damping capacity and Young's modulus of cast iron below $500^{\circ}C$," Journal of Japan Foundrymen's Society, Vol. 55, pp. 597-602 (1983)
  8. B. I. Imasogie and U. Wendt, "Characterization of graphite particle shape in spheroidal graphite iron using a computer-based image analyzer," Journal of Minerals & Materials Characterization & Engineering, Vol. 3, pp. 1-12 (2004)
  9. Y. H. Shy, C. H. Hsu, S. C. Lee and C. Y. Hou, "Effects of titanium addition and section size on microstructure and mechanical properties of compacted graphite cast iron", Materials Science and Engineering A, Vol. 278, pp. 54-60 (2000) https://doi.org/10.1016/S0921-5093(99)00599-7
  10. G. F. Geier, W. Bauer, B. J. McKay and P. Schumacher, "Microstructure transition from lamellar to compacted graphite using different modification agents," Materials Science and Engineering A, Vol. 413-414, pp. 339-345 (2005) https://doi.org/10.1016/j.msea.2005.08.159
  11. M. Chen and R. Wan, "Properties and application of compacted vermicular graphite cast iron in vehicle component," 6th International Pacific Conference on Automotive Engineering, Korean Society of Automotive Engineers, Seoul, South Korea, pp. 713-718 (1991)
  12. D. Steve, "Compacted graphite iron: mechanical and physical properties for engine design," Sintercast, pp. 1-20 (1999)
  13. D. Steve, "Compacted graphite iron - A material solution for modern diesel engine cylinder blocks and heads," 68th World Foundry Congress 7th-10th, pp. 93-99 (2008)

Cited by

  1. Acoustic Emission of Heat Treated Compacted Graphite Iron under 873~1173 K vol.33, pp.5, 2013, https://doi.org/10.7779/JKSNT.2013.33.5.415