DOI QR코드

DOI QR Code

Evaluation of Crack Growth Estimation Parameters of Thick-Walled Cylinder with Non-Idealized Circumferential Through-Wall Cracks

비 이상화된 원주방향 관통균열이 존재하는 두꺼운 배관의 균열 성장 매개변수 계산

  • Han, Tae-Song (Dept. of Mechanical System Design Engineering, Seoul National Univ. of Science and Technology) ;
  • Huh, Nam-Su (Dept. of Mechanical System Design Engineering, Seoul National Univ. of Science and Technology) ;
  • Park, Chi-Yong
  • 한태송 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 허남수 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 박치용 (한국수력원자력(주) 중앙연구원)
  • Received : 2013.03.15
  • Accepted : 2013.04.10
  • Published : 2013.04.30

Abstract

The present paper provides the elastic stress intensity factors(SIFs) of thick-walled cylinder with non-idealized circumferential through-wall cracks. For estimating these elastic SIFs, the systematic three-dimensional(3D) elastic finite element(FE) analyses were performed. In order to consider practical shape of thick-walled cylinder and non-idealized circumferential through-wall crack, the values of thickness of cylinder, reference crack length and crack length ratio were systematically varied. As for loading conditions, axial tension, global bending and internal pressure were considered. In particular, in order to calculate the SIFs of thick-walled cylinder with non-idealized circumferential through-wall crack from those of thick-walled cylinder with idealized circumferential through-wall crack, the correction factor representing the effect of non-idealized crack on the SIFs were proposed in this paper. The present results can be applied to accurately evaluate the rupture probabilities of nuclear piping considering actual crack growth behaviors.

본 논문에서는 두꺼운 배관에 존재하는 비 이상화된 원주방향 관통균열의 탄성 응력확대계수 해를 제시하였다. 이를 위해 3차원 탄성 유한요소해석을 수행하였으며, 배관의 형상 및 비 이상화된 원주방향 관통균열의 영향을 고려하기 위해 배관의 두께, 기준균열길이 및 관통균열길이 비를 체계적으로 변화시켰다. 하중 조건으로는 인장하중, 굽힘모멘트 및 내압을 고려하였다. 또한 본 논문에서는 이상화된 원주방향 관통 균열로부터 비 이상화된 원주방향 관통균열의 응력확대계수를 쉽게 계산하기 위해 관통균열 보정계수를 제시하였다. 본 논문의 결과는 실제 균열성장거동을 고려하여 원자력 배관의 배관파단확률을 보다 정확하게 계산하기 위해 적용될 수 있다.

Keywords

References

  1. Korea Institute of Nuclear Safety, "Safety Review Guidelines for Light Water Reactors (Revision 3)," KINS/GE-N001 (2009)
  2. Nuclear Safety and Security Commission, "Regulation on Technical Standard for Nuclear Reactor Facilities, etc., Article 15 (Environmental Effect Design Bases, etc.)," (2011)
  3. EPRI, Materials Reliability Program, "Welding Residual and Operating Stresses in PWR Alloy 182 Butt Welds(MRP-106)," EPRI Report (2004)
  4. D. Rudland and C. Harrington, "xLPR Pilot Study Report," NUREG-2110, U.S. Nuclear Regulatory Commission. (2012)
  5. D. J. Shim, D. Rudland and D. Harris, "Modeling of subcritical crack growth due to stress corrosion cracking: transition from surface crack to through-wall crack," PVP2011-57267, ASME Pressure Vessels and Piping Conference, Baltimore, Maryland, USA (2011)
  6. A. Zahoor, "Ductile Fracture Handbook," Novetech Corp. (1989)
  7. H. Tada, P. C. Paris and G. R. Irwin, "The Stress Analysis of Cracks Handbook," Del Research Corp., Hellertown, Pennsylvania, USA (1973)
  8. "User's Manual," ABAQUS Ver. 6.11-1, Dassault Systemes (2012)

Cited by

  1. Effect of welding parameters on fracture resistance characteristics of nuclear piping vol.16, pp.1, 2015, https://doi.org/10.1007/s12541-015-0008-2