DOI QR코드

DOI QR Code

Submicrospheres as Both a Template and the Catalyst Source. Silica Submicro-reactor Dotted with Palladium Nanoparticles as Catalysts

  • Kim, Sung Min (Department of Chemistry and Research Institute of Functional Materials Chemistry, Pusan National University) ;
  • Noh, Tae Hwan (Department of Chemistry and Research Institute of Functional Materials Chemistry, Pusan National University) ;
  • Jung, Ok-Sang (Department of Chemistry and Research Institute of Functional Materials Chemistry, Pusan National University)
  • Received : 2012.12.26
  • Accepted : 2013.01.18
  • Published : 2013.04.20

Abstract

Formation of the monodisperse submicrospheres consisting of ionic palladium(II) complexes, $[(Me_4en)Pd(L)]_2(X)_4$($Me_4en$ = N,N,N',N'-tetramethylethylenediamine; L = bis(4-(4-pyridylcarboxyl)phenyl)methane; $X^-=BF_4{^-}$ and $ClO_4{^-}$), has been carried out without any templates or additives. The submicrospheres were coated with silicates, and then calcined in air at $550^{\circ}C$ for 1 h, to efficiently form hollow-spherical $SiO_2$ submicro-reactors dotted with palladium(0) nanoparticles (PdNPs). That is, the submicrospheres act as both a template and a source of the palladium metal nanoparticles. The submicro-reactors containing nano-catalysts have been characterized by means of SEM, TEM, and XPS. Notably, the reactors were proved to be very effective for Suzuki-Miyaura cross-coupling and hydrogenation reactions.

Keywords

References

  1. Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700. https://doi.org/10.1021/ja003055+
  2. Caruso, F.; Caruso, R. A.; Möhwald, H. Science 1998, 282, 1111. https://doi.org/10.1126/science.282.5391.1111
  3. Yoon, H. J.; Chun, I. S.; Na, Y. M.; Lee, Y.-A.; Jung, O.-S. Chem. Commun. 2007, 492.
  4. Chun, I. S.; Kwon, J. A.; Yoon, H. J.; Bae, M. N.; Hong, J.; Jung, O.-S. Angew. Chem., Int. Ed. 2007, 46, 4960. https://doi.org/10.1002/anie.200701152
  5. Yoon, H. J.; Chun, I. S.; Kim, J. P.; Lee, Y. S.; Jung, O.-S. Mater. Lett. 2008, 62, 2883. https://doi.org/10.1016/j.matlet.2008.01.064
  6. Noh, T. H.; Kim, S. A.; Lee, S. Y.; Jung, O.-S. Eur. J. Inorg. Chem. 2009, 4518.
  7. Dibbern, E. M.; Toublan, F. J. J.; Suslick, K. S. J. Am. Chem. Soc. 2006, 128, 6540. https://doi.org/10.1021/ja058198g
  8. Jeong, U.; Herricks, T.; Shahar, E.; Xia, Y. J. Am. Chem. Soc. 2005, 127, 1098. https://doi.org/10.1021/ja043847u
  9. Somorjai, G. A.; Le, Y. M. Introduction to Surface Chemistry and Catalysis, 2nd ed.; John Wiley & Sons: New Jersey, 2010.
  10. Wang, F.; Li, C.; Sun, L. D.; Wu, H.; Ming, T.; Wang, J.; Yu, J. C.; Yan, C. H. J. Am. Chem. Soc. 2011, 133, 1106. https://doi.org/10.1021/ja1095733
  11. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169. https://doi.org/10.1038/35084046
  12. Ogasawara, S.; Kato, S. J. Am. Chem. Soc. 2010, 132, 4608. https://doi.org/10.1021/ja9062053
  13. Harada, T.; Ikeda, S.; Hashimoto, F.; Sakata, T.; Ikeue, K.; Torimoto, T.; Matsumura, M. Langmuir 2010, 26, 17720. https://doi.org/10.1021/la102824s
  14. Zambelli, T.; Wintterlin, J.; Trost, J.; Ertl, G. Science 1996, 273,1688. https://doi.org/10.1126/science.273.5282.1688
  15. Bell, A. T. Science 2003, 299, 1688. https://doi.org/10.1126/science.1083671
  16. Astruc, D. Inorg. Chem. 2007, 46, 1884. https://doi.org/10.1021/ic062183h
  17. Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005,44, 7852. https://doi.org/10.1002/anie.200500766
  18. Reetz, M. T.; Westermann, E. Angew. Chem., Int. Ed. 2000, 39,165. https://doi.org/10.1002/(SICI)1521-3773(20000103)39:1<165::AID-ANIE165>3.0.CO;2-B
  19. Mitsudome, T.; Nose, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Angew. Chem., Int. Ed. 2007, 46, 3288. https://doi.org/10.1002/anie.200604644
  20. Lang, H. F.; May, R. A.; Iversen, B. L.; Chandler, B. D. J. Am. Chem. Soc. 2003, 125, 14832. https://doi.org/10.1021/ja0364120
  21. Schauermann, S.; Hoffmann, J.; Johanek, V.; Hartmann, J.; Libuda, J.; Freund, H. J. Angew. Chem., Int. Ed. 2002, 41, 2532. https://doi.org/10.1002/1521-3773(20020715)41:14<2532::AID-ANIE2532>3.0.CO;2-3
  22. Riahi, G.; Guillemot, D.; Polisset-Tfoin, M.; Khodadadi, A. A.; Fraissard, J. Catal. Today 2002, 72, 115. https://doi.org/10.1016/S0920-5861(01)00485-0
  23. Shin, J. Y.; Lee, B. S.; Jung, Y.; Kim, S. J.; Lee, S. Chem. Commun. 2007, 5238.
  24. Chun, I. S.; Lee, K. S.; Hong, J.; Do, Y.; Jung, O.-S. Chem. Lett. 2007, 36, 548. https://doi.org/10.1246/cl.2007.548
  25. Kim, C. R.; Noh, T. H.; Yoo, K. H.; Yoo, B. R.; Jung, O.-S. Bull. Korean Chem. Soc. 2009, 30, 3057. https://doi.org/10.5012/bkcs.2009.30.12.3057
  26. Stober, W.; Fink, A.; Bohn, E. J. Colloid. Interf. Sci. 1968, 26, 62. https://doi.org/10.1016/0021-9797(68)90272-5
  27. Leng, W.; Chen, M.; Zhou, S.; Wu, L. Langmuir 2010, 26, 14271. https://doi.org/10.1021/la102256t
  28. Liu, J.; He, F.; Durhan, E.; Zhao, D.; Roberts, C. B. Langmuir 2008, 24, 328. https://doi.org/10.1021/la702731h
  29. Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023. https://doi.org/10.1021/cr100105a
  30. Teranishi, T.; Miyake, M. Chem. Mater. 1999, 11, 3414. https://doi.org/10.1021/cm990270k
  31. Narayanan, R.; El-Sayed, M. A. J. Am. Chem. Soc. 2003, 125, 8340. https://doi.org/10.1021/ja035044x
  32. Chung, M.-K.; Schlaf, M. J. Am. Chem. Soc. 2004, 126, 7386. https://doi.org/10.1021/ja049386u

Cited by

  1. Synthesis of catalytic systems based on nanocomposites containing palladium and hydroxycarbonates of rare-earth elements vol.10, pp.7, 2013, https://doi.org/10.1134/s1995078015040035
  2. Cage Effect on Oxidation of Dimethyl Sulfoxide via Pd 2 L 4 Prolate Spheroids vol.41, pp.5, 2013, https://doi.org/10.1002/bkcs.11999