DOI QR코드

DOI QR Code

Correlation Between Total Mercury and Methyl Mercury-In Whole Blood of South Korean

  • Jung, Seon A (Molecular Recognition Research center, Korea Institute of Science and Technology) ;
  • Chung, Dayoung (Molecular Recognition Research center, Korea Institute of Science and Technology) ;
  • On, Jiwon (Molecular Recognition Research center, Korea Institute of Science and Technology) ;
  • Moon, Myeong Hee (Department of Chemistry, Yonsei University) ;
  • Lee, Jeongae (Molecular Recognition Research center, Korea Institute of Science and Technology) ;
  • Pyo, Heesoo (Molecular Recognition Research center, Korea Institute of Science and Technology)
  • Received : 2012.10.23
  • Accepted : 2013.01.14
  • Published : 2013.04.20

Abstract

In this study, total mercury and methyl mercury in whole blood of Korean was analyzed so as to investigate the correlation between total mercury (T-Hg) and methyl mercury (Me-Hg). 4000 whole blood samples were divided in four groups, according to T-Hg concentration in percentile: group I (p25-p50), group II (p50-p75), group III (p75-p95) and group IV (p95-p100). 100 samples were randomly selected from the each group, and Me-Hg concentration was measured. T-Hg concentration in whole blood was analyzed using a Direct Mercury Analyzer-80 and obtained limit of detection (LOD) was $0.2{\mu}gL^{-1}$. Me-Hg concentration was analyzed with ethylate derivatization using headspace-gas chromatography-mass spectrometry, and obtained LOD of methyl mercury was $0.5{\mu}gL^{-1}$. The geometric means of T-Hg and Me-Hg were $6.35{\mu}gL^{-1}$ and $4.44{\mu}gL^{-1}$, respectively, and 71.91% of T-Hg was presented as Me-Hg.

Keywords

References

  1. Susan, E. S. et al. The Journal of the American Medical Association 2003, 289, 1667. https://doi.org/10.1001/jama.289.13.1667
  2. US Environmental Protection Agency, Mercury Study Report to Congress, 1; Executive Summary, Washington, DC; Environmental Protection Agency; 1997; Publication EPA -452/R-97-003.
  3. National Academy of Sciences, Toxicological Effects of Methyl Mercury, Washington, DC, National Research Council, 2000.
  4. Mason, R. P.; Lawson, N. N.; Lawrence, A. L.; Leaner, J. J.; Lee, J. G.; Sheu, G.-R. Marine Chemistry 1999, 65, 77. https://doi.org/10.1016/S0304-4203(99)00012-2
  5. Park, J.-S.; Lee, J.-S.; Kim, G.-B.; Cha, J.-S.; Shin, S. K.; Kang, H.-G.; Hong, E.-J.; Chung, G.-T.; Kim, Y.-H. Water Air Soil Pollut 2010, 207, 391. https://doi.org/10.1007/s11270-009-0144-3
  6. Toffleson, L.; Cordle, F. Environ Health Perspect 1986, 86, 203.
  7. Kathryn, R.; Mahaffey, D. M. Environment Research, Section A 1998, 77, 104. https://doi.org/10.1006/enrs.1998.3834
  8. Takeuki, A.; Takeuki, N.; Gen, J. Physiol. 1962, 45, 1181.
  9. Bakir, F.; Damluji, S. F.; Amin-Zaki, L.; Murtadha, M.; Kahalidi, A.; Al-Rawi, N. Y.; Tikriti, S.; Dhahir, H. I.; Clarkson, T. W.; Smith, J. C.; Doherty, R. A. Science 1973, 181, 230. https://doi.org/10.1126/science.181.4096.230
  10. Silbergeld, E. K.; Devine, P. J. Fuel Process Technol. 2000, 65-66,
  11. Sanchez Uria, J. E.; Sanz-Model, A. Talanta 1998, 509.
  12. Ipolyi, Massanisso, P.; Sposato, S.; Fodor, P.; Morabito, T. Analytical Chimica Acta 2004, 505, 145. https://doi.org/10.1016/S0003-2670(03)00174-0
  13. Jurng, J. S.; Shim, S. G. Journal of Korean Society for Atmospheric Environment 2009, 25(2), 99. https://doi.org/10.5572/KOSAE.2009.25.2.099
  14. Bjornberg, K. A.; Vahter, M.; Berglund, B.; Niklasson, B.; Bennow, M.; Sandborgh-Englund, G. Environmental Health Perspectives 2005, 113(10), 1381. https://doi.org/10.1289/ehp.7856
  15. Hughes, W. L. A. Annals of the New York Academy of Sciences 1957, 65, 454. https://doi.org/10.1111/j.1749-6632.1956.tb36650.x
  16. Lee, K. E.; Hong, Y. S.; Kim, D. S.; Han, M. S.; Yu, B. C.; Kim, Y. W.; Rho, M. S.; Lee, H. J.; Lee, J. W.; Kwak, J. Y.; Kim, J. Y. Korean Journal of Occupational and Environmental Medicine 2007, 19, 268.
  17. Lawery, R.; Buchlet, J. P.; Roels, H.; Hubermont, G. Environmental Research 1978, 5, 278.
  18. Gray, D. G. Toxicology and Applied Pharmacology 1995, 132, 91. https://doi.org/10.1006/taap.1995.1090
  19. Tsuchiya, H.; Mitani, K.; Kodama, K.; Nakata, T. Archives of Occupational and Environmental Health 1984, 39, 11. https://doi.org/10.1080/00039896.1984.10545827
  20. Steuerwald, U.; Weibe, P.; Jorgensen, P. J.; Bjerve, K.; Brock, J.; Heinzow, B.; Budtz-Jorgenen, E.; Grandjean, P. Journal of Pediatric 2000, 136, 599. https://doi.org/10.1067/mpd.2000.102774
  21. Kim, H.-Y. et al. Korean J. Food. Scl. Technol. 2005, 37(6), 882.
  22. US EPA Method 7473 (CAS No. 7439-97-6), 2005, Mercury solids and solutions by thermal decomposition, gold amalgamation, and atomic absorption spectrophotometry for mercury analysis, Obtained 20 January 2005 www.epa.gov/epaoswer/hazwaste/ mercury/pdf/7473.pdf.
  23. Leemakers, M.; Nguyen, H. L.; Kurunczi, S.; Vanneste, B.; Galletti, S.; Baeyens, W. Anal. Bioanal. Chem. 2003, 377, 327. https://doi.org/10.1007/s00216-003-2116-6
  24. Abranko, L.; Jokai, Z.; Fodor, P. Anal. Bioanal. Chem. 2005, 383,448. https://doi.org/10.1007/s00216-005-3395-x
  25. Logar, M.; Horvat, M.; Akagi, H.; Pihlar, B. Anal. Bioanal. Chem. 2002, 374, 1015. https://doi.org/10.1007/s00216-002-1501-x
  26. De Smaele, T.; Moens, L.; Sandra, P.; Dams, R. Microchim. Acta 1999, 130, 241. https://doi.org/10.1007/BF01242912
  27. Bouyssiere, B.; Bako, F.; Savary, L.; Lobinski, R. J. Chromatogr. A 2002, 976, 431. https://doi.org/10.1016/S0021-9673(02)01151-2
  28. Quevauviller, P.; Filippelli, M.; Hovat, M. Trends Anal. Chem. 2000, 19, 157. https://doi.org/10.1016/S0165-9936(99)00202-2
  29. Tu, Q.; Qian, J.; French, W. J. Anal. At. Sepectr. 2000, 15, 1583. https://doi.org/10.1039/b006987f
  30. Mothes, S.; Wennrich, R. J. High Resolut. Chromatogr. 1999, 22,181. https://doi.org/10.1002/(SICI)1521-4168(19990301)22:3<181::AID-JHRC181>3.0.CO;2-V
  31. Hippler, J.; Hoppe, H. W.; Mosel, F.; Rettenmeier, A. W.; Hirner, A. V. J. Chromatogr. B 2009, 877, 2465. https://doi.org/10.1016/j.jchromb.2009.06.004
  32. Douglas C. Baxterm, Ilia Rodushkin, Emma Engstrm, Dennis Klockare, Hans Waara, Clinical Chemistry 2007, 111.
  33. Budtz-Jørgensen, E.; Grandjean, P.; Jørgensen, P. J.; Weihe, P.; Keiding, N. Environmental Research 2004, 385.
  34. Hansen, J. C.; Tarp, U.; Bohm, J. Arch. Environ. Health. 1990, 45,355. https://doi.org/10.1080/00039896.1990.10118754
  35. Grandjean, P.; Weihe, P.; Jorgensen, P. J. Arch. Environ. Health. 1992, 47, 185. https://doi.org/10.1080/00039896.1992.9938348
  36. Kingman, Albertini, T.; Brown, L. J. JDR 1998, 77(3), 461. https://doi.org/10.1177/00220345980770030501
  37. Akagi, H.; Malm, O.; Branches, F. J. P.; Kinjo, Y.; Kashima, Y.; Guimaraes, J. R. D.; Oliveria, R. B.; Karaguchi, K.; Pfeffer, C.; Takizawa, Y.; Kato, H.; Water Air Soil Pollut. 1995, 80, 85. https://doi.org/10.1007/BF01189656

Cited by

  1. Estimation of the Biological Half-Life of Methylmercury Using a Population Toxicokinetic Model vol.12, pp.8, 2015, https://doi.org/10.3390/ijerph120809054
  2. Methyl mercury (MeHg) in vitro exposure alters mitogen-induced lymphocyte proliferation and cytokine expression in Steller sea lion (Eumetopias jubatus) pups vol.725, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2020.138308
  3. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis vol.10, pp.5, 2021, https://doi.org/10.3390/foods10051081