
Commun. Korean Math. Soc. 28 (2013), No. 2, pp. 407–418
http://dx.doi.org/10.4134/CKMS.2013.28.2.407

ON A FAST ITERATIVE METHOD FOR APPROXIMATE

INVERSE OF MATRICES

Fazlollah Soleymani

Abstract. This paper studies a computational iterative method to find
accurate approximations for the inverse of real or complex matrices. The
analysis of convergence reveals that the method reaches seventh-order
convergence. Numerical results including the comparison with different
existing methods in the literature will also be considered to manifest its
superiority in different types of problems.

1. Introduction

The well-known method of Schulz [16], which is defined by

(1.1) Vn+1 = Vn(2I −AVn), n = 0, 1, 2, . . . ,

for the inversion of a matrix A ∈ Cm×m, was proposed in 1933. This method
is also referred to the Hotelling-Bodewig algorithm [7], while it is sometimes
called as the hyper-power iterative method [6].

In fact, Schulz in his fundamental work does not recommend (1.1) for arbi-
trary matrices. It is interesting that he considered an example of a Toeplitz
matrix, since its structure admits cheap matrix operations. That is, a clear sav-
ing in the computational burden could be done for matrices possessing special
structures such as Vandermonde, Cauchy, and Hankel matrices.

The scheme (1.1) is a matrix-by-matrix multiplication iterative method. Dis-
placement representations of a special structured matrix enable its fast multi-
plication by a vector. In the literature, it is known a great number of iterative
methods for computation of the usual matrix inverse, the Moore-Penrose in-
verse and their applications (see e.g. [1], [11], [12] and [14]).

On the other hand, matrix inversion plays a significant role in computer
graphics, particularly in 3D graphics rendering and 3D simulations. Examples
include screen-to-world ray casting, world-to-subspace-to-world object trans-
formations, and physical simulations. All such needs along the preconditioning
for both dense and sparse matrices, encouraged mathematicians to develop new

Received March 6, 2012.
2010 Mathematics Subject Classification. 15A09, 65F10, 65F50.
Key words and phrases. Hotelling-Bodewig algorithm, ill-conditioned, approximate in-

verse, initial matrix.

c©2013 The Korean Mathematical Society

407

408 FAZLOLLAH SOLEYMANI

schemes or to modify the existing ones. For example, dense matrices arise, in
numerical solution of multidimensional integral equations, and their approxi-
mate inverses are often of interest either themselves or as preconditioners in
iterative methods (see for preconditioning [3] or [18]), and the size of matrices
occurs to be about a few hundred of thousands.

As another application of matrix inversion based on [5], we have the role
of matrix inverse in the MIMO (Multiple-Input, Multiple-Output) technology
in wireless communications. The MIMO system consists of N transmit and
M receive antennas. Unique signals, occupying the same frequency band, are
sent via N transmit antennas and are received via M receive antennas. The
signal arriving at each receive antenna will be a linear combination of the N
transmitted signals forming a N × M transmission matrix H . It is crucial
for the matrix H to be invertible for the receiver to be able to figure out
the transmitted information. Therefore, an efficient algorithm to find robust
approximate inverses of this type of matrices is really a need.

A straightforward way to determine A−1 is to compute it explicitly. Us-
ing such an approach, the complexity of the method is O(m3), even when the
sparsity is not exploited. Exploiting sparsity, ill-conditioning, and clever re-
ordering techniques would yield a much more favorable complexity, [15]. This
approach can be quite expensive for large matrices or matrices arising from a 3-
D mesh problem particulary in solving Partial Differential Equations (PDEs).
Luckily, in many cases the dense matrices possess some structures suggesting
a way to make them tractable; and for sparse matrices, some threshold-based
approaches can be some remedy to reduce the computational burden of matrix
multiplications.

Now let us review some of the known methods. In 2010, Li and Li in [10]
proposed

(1.2) Vn+1 = Vn(3I − 3AVn + (AVn)
2), n = 0, 1, 2, . . . ,

wherein I denoted the identity matrix of the appropriate dimension. In 2011,
Li et al. in [9] re-presented (1.2) in the following form

(1.3) Vn+1 = Vn(3I −AVn(3I −AVn)), n = 0, 1, 2, . . . ,

while (1.2) and (1.3) are equal and they have previously studied in [8]. They
also proposed another iterative method for finding A−1 as comes next:

(1.4) Vn+1 =

[

I +
1

4
(I − VnA)(3I − VnA)

2

]

Vn, n = 0, 1, 2,

Inspired and motivated by the classical method (1.1) for finding the inverse
of a matrix A, we will study a high order method. The rest of this paper is
organized as follows. The main study of this article is given in Section 2. It
is also devoted to the analysis of convergence which shows that the method
reaches a high rate of convergence. Extension of the method for singular or
rectangular matrices will also be given. Subsequently, the method is examined

ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE 409

in Section 3 numerically. Finally, concluding remarks will be presented in
Section 4.

2. Main results

This section contains a new high order algorithm for finding A−1 numer-
ically. In order to deal with ill-conditioned linear systems, or to find robust
approximate inverses, one remedy is to rely on high-order Schulz-type methods.
Applying the following four-step nonlinear solver

(2.1)























yn = xn − f ′(xn)
−1f(xn),

zn = yn − (f [yn, xn])
−1f(yn),

wn = zn − (f [zn, yn])
−1f(zn),

xn+1 = wn − (f [wn, yn])
−1f(wn), n = 0, 1, 2, . . . ,

on the matrix equation F (V) = V −1 − A, where e.g. f [zn, yn] =
f(zn)−f(yn)

zn−yn

,

is the two-point divided difference, gives us the aimed seventh-order method.
Hence, we suggest the following iteration method

Vn+1 = Vn(7I +AVn(−21I +AVn(35I +AVn(−35I

(2.2) +AVn(21I +AVn(−7I +AVn)))))),

for any n = 0, 1, 2, . . ., where I is the identity matrix, and the sequence of
iterates {Vn}n=∞

n=0 converges to A−1 for a proper matrix V0.

Theorem 2.1. Let A = [aij]m×m be a nonsingular real or complex matrix. If

the initial approximation V0 satisfies

(2.3) ‖I −AV0‖ < 1,

then the iterative method (2.2) converges with seventh order to A−1.

Proof. Let ‖I−AV0‖ < 1, and also E0 = I−AV0. We thus have En = I−AVn.
Then

(2.4)

En+1 = I −AVn+1

= I −A(Vn(7I +AVn(−21I +AVn(35I +AVn(−35I

+AVn(21I +AVn(−7I +AVn)))))))

= I − [AVn(7I − 21AVn + 35(AVn)
2 − 35(AVn)

3

+ 21(AVn)
4 − 7(AVn)

5
+ (AVn)

6
)]

= I − (7AVn − 21(AVn)
2
+ 35(AVn)

3 − 35(AVn)
4

+ 21(AVn)
5 − 7(AVn)

6
+ (AVn)

7

= − (I − AVn)
7

= − E7
n.

410 FAZLOLLAH SOLEYMANI

In addition, since ‖E0‖ < 1, by relation (2.4) we obtain that

(2.5) ‖En+1‖ ≤ ‖En‖7 ≤ ‖En−1‖7
2 ≤ · · · ≤ ‖E0‖7

n+1

,

where (2.5) tends to zero when n → ∞. That is, I − AVn → 0 when n → ∞,
and thus Vn → A−1 as n → ∞. Now we show the seventh order of convergence
using the sequence {Vn}n=∞

n=0 . To do this, we denote en = Vn − A−1, as the
error matrix in the iterative procedure (2.2). We have

(2.6) I −AVn+1 = −(I −AVn)
7.

Hence, we could get that

(2.7) A(A−1 − Vn+1) = −(A(A−1 − Vn))
7,

which yields

(2.8) ‖en+1‖ ≤ ‖A‖6‖en‖7.
Thus the iteration (2.2) converges with seventh order to A−1. This concludes
the proof. �

We now give another property about the scheme (2.2) under a tight condi-
tion.

Theorem 2.2. Let A = [aij]m×m be a nonsingular real or complex matrix.

If AV0 = V0A is valid, then for the sequence {Vn}n=∞
n=0 of (1.4), we have that

AVn = VnA holds for all n = 1, 2,

Proof. First, since AV0 = V0A, we have from (2.2) that

AV1 = A(V0(7I +AV0(−21I +AV0(35I +AV0(−35I +AV0(21I

+AV0(−7I +AV0)))))))

= (V0A(7I + V0A(−21I + V0A(35I + V0A(−35I

+ V0A(21I + V0A(−7I + V0A)))))))

= (V0(7I +AV0(−21I +AV0(35I

+AV0(−35I +AV0(21I +AV0(−7I +AV0)))))))A

= V1A.

That is, when n = 1, the conditions of the theorem hold. Now, we use the
mathematical induction for proving the rest of the procedure. Suppose that
AVn = VnA is true. Then a straightforward calculation shows that, for all
n ≥ 2:

AVn+1 = A(Vn(7I +AVn(−21I +AVn(35I +AVn(−35I +AVn(21I

+AVn(−7I +AVn)))))))

= (VnA(7I + VnA(−21I + VnA(35I

+ VnA(−35I + VnA(21I + VnA(−7I + VnA)))))))

= (Vn(7I +AVn(−21I +AVn(35I +AVn(−35I

ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE 411

+AVn(21I +AVn(−7I +AVn)))))))A

= Vn+1A.

The proof is now complete. �

Note that the following initial matrix V0 = αI, where I is the identity matrix,
and α ∈ R must adaptively be determined such that ‖I − αA‖ < 1, is one of
the only ways, which guarantees the tight conditions of Theorem 2.2.

Let us now discuss on some other aspects of (2.2) in finding generalized
inverse. The Moore-Penrose inverse of a complex matrix A ∈ Cm×k (also called
pseudo-inverse), denoted by A† ∈ Ck×m, is a matrix X ∈ Ck×m satisfying the
following conditions

(2.9) AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

where A∗ is the conjugate transpose of A. Note that such an inverse is uniquely
exist (see [2] and [4] for more details). It is known that (1.1) converges to the
pseudo-inverse in the general case if V0 := αA∗, where 0 < α < 2/ρ(A∗A) and
ρ(·) denotes the spectral radius.

The scheme (2.2) converges to the Moore-Penrose inverse, when having sin-
gular matrix as well. In order validate this analytically, we give the following
theorem.

Theorem 2.3. For the sequence {Vn}n=∞
n=0 generated by the iterative Schulz-

type method (2.2), for any n ≥ 0, it holds that

(2.10) (AVn)
∗ = AVn, (VnA)

∗ = VnA, VnAA
† = Vn, AA†Vn = Vn.

Proof. We will prove the conclusion by induction on n. For n = 0, by V0 =
αA∗, the first two equations can be demonstrated simply, and we only give a
verification to the last two equations in what follows:

V0AA
† = αA∗AA† = αA∗(AA†)∗ = αA∗(A†)∗A∗ = α(AA†A)∗ = αA∗ = V0,

A†AV0 = (A†A)αA∗ = α(A†A)∗A∗ = αA∗(A†)∗A∗ = α(AA†A)∗ = αA∗ = V0.

Assume now that the conclusion holds for some n > 0. We now show that it
continues to hold for n+ 1. Using the iterative method (2.2), one has

(AVn+1)
∗ = (A(Vn(7I + AVn(−21I +AVn(35I +AVn(−35I

+AVn(21I +AVn(−7I +AVn))))))))
∗

= [7AVn − 21(AVn)
2 + 35(AVn)

3 − 35(AVn)
4

+ 21(AVn)
5 − 7(AVn)

6 + (AVn)
7]∗

= 7(AVn)
∗ − 21((AVn)

∗)2 + 35((AVn)
∗)3 − 35((AVn)

∗)4

+ 21((AVn)
∗)5 − 7((AVn)

∗)6 + ((AVn)
∗)7

= A(Vn(7I +AVn(−21I +AVn(35I +AVn(−35I

+AVn(21I +AVn(−7I +AVn)))))))

412 FAZLOLLAH SOLEYMANI

= AVn+1,

where the following fact (AVn)
∗ = AVn has been used. Thus, the first equality

in (2.10) holds for n + 1, and the second equality can be proved in a similar
way. For the third equality in (2.10), using the assumption that VnAA

† = Vn

and the iterative method (2.2), we could write down

Vn+1AA
† = (Vn(7I +AVn(−21I + VnAVn(35I + VnAVn(−35I

+ VnAVn(21I +AVn(−7I +AVn)))))))AA
†

= 7VnAA
† − 21AVnAA

† + 35Vn(AVn)
2AA† − 35Vn(AVn)

3AA†

+ 21Vn(AVn)
4AA† − 7Vn(AVn)

5AA† + Vn(AVn)
6AA†

= 7Vn − 21AVn + 35Vn(AVn)
2 − 35Vn(AVn)

3

+ 21Vn(AVn)
4 − 7Vn(AVn)

5 + Vn(AVn)
6

= Vn(7I +AVn(−21I +AVn(35I +AVn(−35I

+ VnAVn(21I +AVn(−7I +AVn))))))

= Vn+1.

Hence the third equality in (2.10) holds for n + 1. The fourth equality can
similarly be proved, and the desired result follows. �

3. Applications

The applicability of such Schulz-type iterative methods could be restricted
since global convergence is not inherent to all initial matrices. This motivated
many authors to propose general or special ways for selecting the initial matrix
in order to achieve the convergence properties. For instance authors in [13]
proposed

(3.1) V0 =
AT

‖A‖1‖A‖∞
,

for an m×m matrix A, where T stands for transpose, ‖A‖1 = maxj(Σ
m
i=1|aij |)

and ‖A‖∞ = maxi(Σ
m
j=1|aij |). This choice yields ‖I − AV0‖2 ≤ 1 − 1/(nκ2),

where κ = σmax/σmin. Moreover, for an m × m symmetric positive definite
matrix A, by choosing

(3.2) V0 = I/‖A‖F ,
they obtained the bound ‖I −AV0‖2 ≤ 1− 1/(

√
mκ).

For numerical comparisons in this section, we have used the methods (1.1),
(1.3), (1.4) and (2.2). Now we implement the above algorithms on the follow-
ing examples. We used Mathematica 8 [17] in calculations. In this paper,
the computer specifications are Intel(R) Core(TM) 2 Quad CPU, Q9550 @
2.83GHz with 2.00GB of RAM. The elapsed time in seconds for running the
Mathematica 8 codes will be reported using the command AbsoluteTiming[].

ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE 413

Example 1. Let us consider finding the approximate inverse of a 100 × 100
Hankel matrix (a Hankel matrix or catalecticant matrix, named after Her-
mann Hankel, is a square matrix with constant skew-diagonals, i.e., posi-
tive sloping diagonals). If the i, j element of A is denoted Ai,j , then we
have Ai,j = Ai−1,j+1. In Mathematica, it could be defined by n = 100;
A = N[HankelMatrix[n]];.

Figure 1. The ListPlot3D of the Hankel matrix in Example 1.

Figure 2. The ListPlot3D of the approximate inverse in Ex-
ample 1.

The Hankel matrix is closely related to the Toeplitz matrix. In fact, a Hankel
matrix is an upside-down Toeplitz matrix. Hankel matrices are formed when
given a sequence of output data and a realization of an underlying state-space
or hidden Markov model is desired.

414 FAZLOLLAH SOLEYMANI

Figure 3. The ListPlot3D of the matrix Chop[A.V, 10−8] in
Example 1.

The list 3D plots of the A, its approximate inverse and the multiplication of
these two matrices to observe an identity-like matrix output are given in Figures
1-3, respectively. In this example, the stopping criterion is ‖I−VnA‖1 ≤ 1.E−6
in double precision arithmetic. The results of comparisons are reported in Table
1. It shows the number of iterations for different methods in order to reveal
the efficiency of the proposed iteration. Note that the initial guess has been
constructed using (3.1).

The piece of code for implementing the scheme (2.2) in Mathematica 8 is
given as follows:

Clear["Global‘*"]

n = 100; A = N[HankelMatrix[n]];

Id = SparseArray[{{i_, i_} -> 1.}, {n, n}, 0.];

V = Transpose[A]/(Norm[A, 1]*Norm[A, Infinity]);

k1 = N[Norm[Id - A.V]];

k2 = N[Norm[Id - A.V, 1]];

k3 = N[Norm[Id - A.V, Infinity]];

If[k1 <= 1 || k2 <= 1 || k3 <= 1,

{k = 1; While[k <= 75 && N[Norm[Id - V.A, 1]] >= 10^-6,

V1 = SparseArray[V]; VV = A.V1;

V = Chop[V1.SparseArray[7 Id + VV.(-21 Id + VV.(35 Id

+ VV.(-35 Id + VV.(21 Id + VV.(-7 Id + VV)))))],

10^-8]; k++];

Print["The approximate inverse is:" SparseArray[V]];

Print["The number of iterations is:" (k-1)];},

Print["The method will mostly fail to converge due to badly

chosen initial guess."]]; // AbsoluteTiming

ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE 415

Table 1. Results of comparisons for Example 1.

Methods (1.1) (1.3) (1.4) (2.2)
Iteration number 18 11 11 7
The running time 0.34 0.21 0.22 0.15

Example 2. In order to deal with ill conditioned matrices, in this example
we use 32 digits floating point arithmetics in our calculations so as to keep the
effect of round-off error at minimum. Let us consider Hilbert matrix of the size
n = 14 with the condition number 4.53776× 1019.

The results of comparisons are reported in Table 2 for finding its inverse
by different Schulz-type iterative methods. The initial guess is constructed by
(3.1). In this example, the stopping criterion is ‖I −VnA‖1 ≤ 1.E− 6. Similar
to Example 1, our method for such ill-conditioned matrices could be coded in
what follows:

Clear["Global‘*"]

n = 14; digits = 32;

A = SetAccuracy[HilbertMatrix[n], digits];

Id = SetAccuracy[SparseArray[{{i_, i_} -> 1.}

, {n, n}, 0], digits];

V = SetAccuracy[Transpose[A]/(Norm[A, 1]

*Norm[A, Infinity]), digits];

k1 = N[Norm[Id - A.V]];

k2 = N[Norm[Id - A.V, 1]];

k3 = N[Norm[Id - A.V, Infinity]];

If[k1 <= 1 || k2 <= 1 || k3 <= 1,

{k = 1; While[k <= 1000 && N[Norm[Id - V.A, 1]] >= 10^-6,

VV = SetAccuracy[A.V, digits];

V = SetAccuracy[V.(7 Id + VV.(-21 Id + VV.(35 Id

+ VV.(-35 Id + VV.(21 Id

+ VV.(-7 Id + VV)))))), digits]; k++];

Print["The number of iterations is:" (k - 1)];},

Print["The method will mostly fail to converge due to badly

chosen initial guess."]]; // AbsoluteTiming

Table 2. Results of comparisons for Example 2.

Methods (1.1) (1.3) (1.4) (2.2)
Iteration number 134 85 79 48
The running time 2.29 1.98 2.26 2.10

416 FAZLOLLAH SOLEYMANI

Example 3. This test is devoted to the application of the Schulz-type iterative
methods in finding the pseudo-inverse of some large random matrices defined
as follows.

k = 301; m = 300; number = 10;

Table[A[j] = RandomReal[{-100, 10}, {m, k}], {j,

number}]; // AbsoluteTiming

Id = SparseArray[{{i_, i_} -> 1.}, {m, m}, 0.];

The results of comparisons for 10 different random matrices in double preci-
sion arithmetics of the sizem×k = 300×301 are reported in Figures 4-5 in terms
of the number of iterations and the computational times. The compared meth-
ods are, (1.1) denoted by “Schulz”, (1.3) denoted by “KMS” and the new itera-
tive scheme (2.2) denoted by “PM”. A clear saving in the elapsed time by con-
sidering the stopping criterion as ||Vn+1 − Vn||1 ≤ 10−6 can be observed for the
studied method (2.2). In this test, the initial matrix has been computed for each
random matrix by V0[j] = ConjugateTranspose[A[j]]∗ (1./(Norm[A[j], 2]2)).

æ

æ
æ æ

æ

æ
æ

æ æ
æ

à

à à à

à

à
à

à à à

ì
ì

ì ì
ì

ì
ì ì

ì ì

2 4 6 8 10

0

5

10

15

20

25

30

Matrices

N
um

be
r

of
ite

ra
tio

ns

ì PM

à KSM

æ Schulz

Figure 4. The results of comparisons for Example 3 in terms
of the number of iterations.

4. Summary

In this paper, we have studied an iterative method in inverse-finding of
singular or nonsingular matrices, which could be real or complex. We have
shown that the suggested method (2.2) reaches seventh order of convergence,

ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE 417

æ

æ
æ æ

æ

æ
æ

æ æ
æ

à

à à à

à

à
à

à à à

ì
ì

ì ì
ì

ì
ì ì

ì ì

2 4 6 8 10

0

1

2

3

4

5

6

Matrices

C
om

pu
ta

tio
na

lT
im

e
Hs

ec
on

ds
L

ì PM

à KSM

æ Schulz

Figure 5. The results of comparisons for Example 3 in terms
of the elapsed time.

while a discussion on finding the Moore-Penrose inverse has also been given.
The applicability of the new scheme was illustrated numerically in Section 3.

It should be remarked that we have used the threshold Chop[exp, tol] with
tol = 10−8 in Example 1. In fact, this command provides an amazing tool
at hand for making the process so much fast for sparse matrices by avoiding
unnecessary multiplications. By choosing a tolerance like 0.001, we would be
able to make necessary zeros in the approximate inverse and thus the sparsity
of the approximate inverse would be high enough to accelerate the matrix by
matrix multiplications for sparse matrices.

Finally, according to the numerical results obtained and the concrete appli-
cation of such solvers, we can conclude that the method is rapid.

References

[1] A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and as-

sociated projections, SIAM J. Numer. Anal. 3 (1966), 410–419.
[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Springer, 2nd edition, 2003.
[3] W. Cao and B. Guo, Preconditioning for the p-version boundary element method in three

dimension with tringaular elements, J. Korean Math. Soc. 41 (2004), no. 2, 345–368.
[4] H. Chen and Y. Wang, A family of higher-order convergent iterative methods for com-

puting the Moore-Penrose inverse, Appl. Math. Comput. 218 (2011), no. 8, 4012–4016.
[5] en.wikipedia.org/wiki/Invertible matrix.

418 FAZLOLLAH SOLEYMANI

[6] J. M. Garnett, A. Ben-Israel, and S. S. Yau, A hyperpower iterative method for comput-

ing matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971),
104–109.

[7] H. Hotelling, Analysis of a complerx statistocal variable into principal components, J.
Educ. Psysh. 24 (1933), 498–520.

[8] E. V. Krishnamurthy and S. K. Sen, Numerical Algorithms, Computations in science
and engineering.Affiliated East-West Press Pvt. Ltd., New Delhi, 1986.

[9] H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and T.-X. Gu, Chebyshev-type methods and

preconditioning techniques, Appl. Math. Comput. 218 (2011), no. 2, 260–270.
[10] W. Li and Z. Li, A family of iterative methods for computing the approximate inverse of

a square matrix and inner inverse of a non-square matrix, Appl. Math. Comput. 215
(2010), no. 9, 3433–3442.

[11] M. Monsalve and M. Raydan, A new inversion-free method for a rational matrix equa-

tion, Linear Algebra Appl. 433 (2010), no. 1, 64–71.
[12] Y. Nakatsukasa, Z. Bai, and F. Gygi, Optimizing Halley’s iteration for computing the

matrix polar decomposition, SIAM. J. Matrix Anal. Appl. 31 (2010), no. 5, 2700–2720.
[13] V. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of

a matrix, with applications, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1109–1130.
[14] I. Pavaloiu and E. Catina, Remarks on some Newton and Chebyshev-type methods for

approximation eigenvalues and eigenvectors of matrices, Comput. Sci. J. Moldova 7

(1999), no. 1, 3–17.
[15] S. M. Rump, Inversion of extremely ill-conditioned matrices in floating-point, Japan J.

Indust. Appl. Math. 26 (2009), no. 2-3, 249–277.
[16] G. Schulz, Iterative Berechnung der Reziproken matrix, Z. Angew. Math. Mech. 13

(1933), 57–59.
[17] S. Wolfram, The Mathematica Book, 5th edition, Wolfram Media, 2003.
[18] J. H. Yun, Comparison results for the preconditioned Gauss-Seidel methods, Commun.

Korean Math. Soc. 27 (2012), no. 1, 207–215.

Department of Mathematics

Islamic Azad University

Zahedan Branch, Zahedan 98168, Iran

E-mail address: fazlollah.soleymani@gmail.com

