DOI QR코드

DOI QR Code

형광상관분광법을 이용한 광세기에 따른 유효 초점 부피 변화에 대한 연구

Study on the Effective Focal Volume Change due to Light Intensity Using Fluorescence Correlation Spectroscopy

  • 투고 : 2013.03.14
  • 심사 : 2013.04.19
  • 발행 : 2013.04.25

초록

형광상관분광법을 이용하여 광세기에 따른 공초점 시스템의 유효 초점 부피의 변화를 분석하였다. 형광상관분광장치는 632.8 nm 파장의 He-Ne 레이저에 맞춰서 실험실에서 자체 제작하였고, 시료 또한 레이저 파장에 적합한 두 종류의 시료 AlexaFluor647과 quantum dot 655를 사용하였다. 각 시료에 대해 광원의 세기를 1~50 ${\mu}W$ 범위내에서 변화시켜가며 얻어진 상관함수를 비교 분석하였다. 10 ${\mu}W$ 이하의 약한 광 세기에서는 세기 변화에 따라 입자수와 확산시간이 증가하는 것을 통해 초점 영역의 반지름이 선형적으로 증가하는 결과를 보였다. 반면 10~15 ${\mu}W$ 이상에서는 입자의 수와 확산 시간의 증가율은 감소하였지만 미세하게 계속해서 증가하는 결과를 보였고, 이 결과를 통해 초점영역의 반지름 역시 증가율은 감소하였지만 미세하게 증가한 것을 알 수 있었다.

Using fluorescence correlation spectroscopy, we analyzed the change of effective focal volume of a confocal system with light intensity. The fluorescence correlation spectroscopy system was home-built in accordance with the He-Ne laser with a wavelength of 632.8 nm, and two kinds of samples (AlexaFluor657 and Quantum dot655) suitable for the wavelength of the laser beam were used. For each sample, we analyzed and compared the correlation functions obtained while changing the intensity of the light source in a range of 1~50 ${\mu}W$. The result shows that the radius of the focal area increases linearly through the increase of particle number and diffusion time in response to an intensity change in weak light below 10 ${\mu}W$. In the higher intensity region (>10~15 ${\mu}W$), the increasing rate of particle number and diffusion time keep increasing but at a much slower rate. Through this result, it was also found that the radius increasing rate of the focal area was reduced however, the radius still increased slightly.

키워드

참고문헌

  1. J. Mertz, Introduction to Optical Microscopy (Robertand Company Publishers, Colorado, 2010), p. 269.
  2. A. Cooper, Biophysical Chemistry (RSC, Cambridge, UK, 2005), Chapter 4.
  3. S. H. Kim, T. Shin, and D. Kim, "Particles size measurement of silole nano-clusters by fluorescence correlation spectroscopy," J. Korean Phys. Soc. 56, 1264-1268 (2010). https://doi.org/10.3938/jkps.56.1264
  4. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999). https://doi.org/10.1016/S0006-3495(99)77065-7
  5. M. Ehrenberg and R. Rigler, "Rotational brownian motion and fluorescence intensify fluctuations," Chem. Phys. 4, 394(1974)
  6. D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuation in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972). https://doi.org/10.1103/PhysRevLett.29.705
  7. E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. I. conceptual basis and theory," Biopolymers 13, 1-27 (1974). https://doi.org/10.1002/bip.1974.360130102
  8. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer Science+Business Media, New York, USA, 2006), p. 797.
  9. O. Krichevsky and G. Bonnet, "Fluorescence correlation spectroscopy: the technique and its applications," Rep. Prog. Phys. 65, 251-297 (2002). https://doi.org/10.1088/0034-4885/65/2/203
  10. P. Kask, P. Piksarv, M. Pooga, T. Mets, and E. Lippmaa, "Separation of the rotational contribution in fluorescence correlation experiments," Biophys. J. 55, 213-220 (1989). https://doi.org/10.1016/S0006-3495(89)82796-1
  11. J. A. Hodgdon and F. H. Stillinger, "Stokes-Einstein iolation in glass-forming liquids," Phys, Rev. E 48, 207-213 (1993). https://doi.org/10.1103/PhysRevE.48.207
  12. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 1994), Chapter 6, p. 205.
  13. K. Jacobson, E. D. Sheets, and R. Simson, "Revisiting the fluid mosaic model of membranes," Science 268, 1441-1442(1995). https://doi.org/10.1126/science.7770769
  14. J. B. Pawley, Hand book of Biological Confocal Microscopy, 3rd ed. (Springer, New York, USA, 2006), p. 506.
  15. K. Wang, X. Qiu, C. Dong, and J. Ren, "Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles," Chem BioChem 8, 1126-1129 (2007).
  16. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, "Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration," ChemPhysChem 6, 2324-2336 (2005). https://doi.org/10.1002/cphc.200500414