DOI QR코드

DOI QR Code

금속 슬릿 배열로 구성된 편광 선택 가능한 블레이즈드 회절 격자

Polarization Selective Blazed Grating Employing Metal-slit Arrays

  • 정영진 (울산과학대학교 전기전자공학부)
  • 투고 : 2013.03.25
  • 심사 : 2013.04.19
  • 발행 : 2013.04.25

초록

본 논문에서는 금속 슬릿 배열로 구성된 편광 선택 가능한 블레이즈드 회절 격자를 제안한다. 마이크로 스케일의 블레이즈드 회절 격자를 디자인 하고 이 구조에 추가적으로 나노스케일의 금속 슬릿 구조를 적용하여 편광 선택기능을 부여하였다. 이 소자에 대하여 사례 연구로 예를 디자인하여 FDTD(Finite Difference Time Domain method)방법을 이용한 전산모사를 통해 성능을 검증해 보았다. 임의의 디자인 사례에 대해 대략 77.61% 의 회절효율과 8.99의 편광선택비가 얻어졌으며 편광선택비를 높이기 위한 또 다른 디자인에서는 64.22%의 회절효율과 81.09의 편광선택비가 얻어졌다.

A polarization selective blazed grating employing metal-slit arrays was proposed. Nano-scale metal-slits were applied to the micro-scale blazed grating to give the functionality of polarization selection. Case study was carried out for the proposed structure utilizing numerical FDTD (Finite Difference Time Domain method) simulation. Diffraction efficiency of 77.61% and polarization extinction ratio of 8.99 was achieved with arbitrary parameters and diffraction efficiency of 64.22% and polarization extinction ratio of 81.09 was achieved with other parameters to enhance extinction ratio.

키워드

참고문헌

  1. K. K. Sharma, Optics: Principles and Applications (Academic Press, 2006)
  2. Y. J. Jung, D. Park, S. Koo, S. Yu, and N. Park, "Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides," Opt. Express 17, 18852-18857 (2009). https://doi.org/10.1364/OE.17.018852
  3. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005). https://doi.org/10.1364/OPEX.13.006815
  4. H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, "Principle and design approach of flat nano-metallic surface plasmonic lens," Applied Physics A-Materials Science & Processing 89, 397-401 (2007). https://doi.org/10.1007/s00339-007-4124-4
  5. H. X. Yuan, B. X. Xu, and T. C. Chong, "Focusing effect and performance analysis of flat metal slit array lens," in Optical Data Storage (2007), TuE2.
  6. Z. J. Sun, "Beam splitting with a modified metallic nano-optic lens," Appl. Phys. Lett. 89, 261119 (2006). https://doi.org/10.1063/1.2425049
  7. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, "Subwavelength imaging by metallic slab lens with nanoslits," Appl. Phys. Lett. 91, 201501 (2007). https://doi.org/10.1063/1.2811711
  8. N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nature Photonics 2, 564-570 (2008). https://doi.org/10.1038/nphoton.2008.152
  9. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Quantum cascade lasers with integrated plasmonic antennaarray collimators," Opt. Express 16, 19447-19461 (2008). https://doi.org/10.1364/OE.16.019447
  10. S. Arnold, E. Gardner, D. Hansen, and R. Perkins, "An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers," SID Symposium Digest of Technical Papers 32, 1282-1285 (2001).
  11. L. Zhang, C. Li, F. Zhang, and L. Shi, "Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication," Journal of Optoelectronics and Advanced Materials 8, 847-850 (2006).
  12. C. Pentico, E. Gardner, D. Hansen, and R. Perkins, "New, high performance, durable polarizers for projection displays," SID Symposium Digest of Technical Papers 33, 730-733(2002).
  13. D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Eeng, H. Ming, L. Zhang, and W. Liu, "Polarization properties of subwavelength metallic gratings in visible light band," Appl. Phys. B 85, 139-143 (2006). https://doi.org/10.1007/s00340-006-2403-y
  14. Lumerical Solution Inc., "Nanowire grid polarizer as compact photonic polarization control elements-design and optimization with FDTD solutions,", http://www.lumerical.com