DOI QR코드

DOI QR Code

The Magnetic Entropy Change on La0.7Ba0.3Mn1-xFexO3 Compound

  • Hwang, J.S. (BK21 Physics Program and Department of Physics, Chungbuk National University) ;
  • Jang, D.M. (BK21 Physics Program and Department of Physics, Chungbuk National University) ;
  • Kim, K.S. (BK21 Physics Program and Department of Physics, Chungbuk National University) ;
  • Lee, J.S. (Department of Precision Mechanical Engineering, Gangneung-Wonju National University) ;
  • Yu, S.C. (BK21 Physics Program and Department of Physics, Chungbuk National University)
  • Received : 2012.12.06
  • Accepted : 2013.02.01
  • Published : 2013.03.31

Abstract

The magnetocaloric effect and magnetization behavior have been analyzed in the double-perovskite $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound with the sintering temperature at 1273 K. Samples were fabricated by the conventional solid-state reaction method. X-ray diffraction measurement revealed that all the samples had a single phase in orthorhombic. Detailed investigations of the magnetic entropy behavior of the samples were discussed with the variation of $T_C$. The magnetic entropy changes, ${\Delta}S_M$ of approximately 0.36-1.14 J/kg K were obtained in the temperature range of 145-350 K for the $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound. The enhancement of the magnetic entropy change is believed to be due to changes in the microstructure, which changes the magnetic part of the entropy of a solid around the magnetic ordering temperature.

Keywords

References

  1. G. K. Nicolaides, G. C. Hadjipanyis, and K. V. Rao, Phys. Rev. B 48, 12759 (1993). https://doi.org/10.1103/PhysRevB.48.12759
  2. V. K. Pecharsky and K. A. Gschneidner, Jr, J. Appl. Phys. 86, 565 (1999). https://doi.org/10.1063/1.370767
  3. M. Földeàki, R. Chahine, and T. K. Bose, J. Appl. Phys. 77, 3528 (1995). https://doi.org/10.1063/1.358648
  4. C. Zener, Phys. Rev. 81, 440 (1951). https://doi.org/10.1103/PhysRev.81.440
  5. P. G. Radaelli, D. E. Cox, M. Marezio, S. W. Cheong, P. E. Schiffer, and A. P. Ramirez, Phys. Rev. Lett. 75, 4488 (1995). https://doi.org/10.1103/PhysRevLett.75.4488
  6. C. X. Huu, N. Chau, N. D. The, and N. Q. Hoa, J. Kor. Phys. Soc. 53, 763 (2008). https://doi.org/10.3938/jkps.53.763
  7. N. Chau, D. T. Hanh, B. C. Tinh, N. H. Luong, N. D. Tho, and N. H. Hai, J. Kor. Phys. Soc. 52, 1431 (2008). https://doi.org/10.3938/jkps.52.1431
  8. M. S. Lee, C. M. Heo, K. S. Kim, B. S. Kang, S. C. Yu, Y. S. Kim, J. Y. Kim, and B. W. Lee, J. Kor. Phys. Soc. 57, 1897 (2010). https://doi.org/10.3938/jkps.57.1897
  9. X. X. Zhang, J. Tejada, Y. Xin, G. F. Sun, K. W. Wong, and X. Bohigas, Appl. Phys. Lett. 69, 3596 (1996). https://doi.org/10.1063/1.117218
  10. Z. M. Wang, G. Ni, Q. Y. Xu, H. Sang, and Y. W. Du, J. Appl. Phys. 90, 5689 (2001). https://doi.org/10.1063/1.1415055
  11. M. H. Phan, S. B. Tian, S. C. Yu, and A. N. Ulyanov, J. Magn. Magn. Mater. 256, 306 (2003). https://doi.org/10.1016/S0304-8853(02)00584-X
  12. Z. B. Guo, Y. W. Du, L. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett. 78, 1142 (1997). https://doi.org/10.1103/PhysRevLett.78.1142
  13. H. L. Ju, J. Gopalakrishnan, J. L. Peng, Q. Li, G. C. Xiong, T. Venkateasan, and R. L. Greene, Phys. Rev. B 51, 6143 (1995). https://doi.org/10.1103/PhysRevB.51.6143
  14. S. K Banerjee, Phys. Lett. 12, 16 (1964).