A CERTAIN SUBCLASS OF JANOWSKI TYPE FUNCTIONS ASSOCIATED WITH k-SYMMETRIC POINTS

Ohsang Kwon and Youngjae Sim

ABSTRACT. We introduce a subclass $\mathcal{S}_s^{(k)}(A,B)$ $(-1 \leq B < A \leq 1)$ of functions which are analytic in the open unit disk and close-to-convex with respect to k-symmetric points. We give some coefficient inequalities, integral representations and invariance properties of functions belonging to this class.

1. Introduction

Let \mathcal{A} denote the class of functions which are analytic in the open unit disk \mathbb{U} and normalized by f(0) = 0 and f'(0) = 1. Also let \mathcal{S} denote the subclass of \mathcal{A} consisting of all functions which are univalent in \mathbb{U} .

Let f(z) and F(z) be analytic in \mathbb{U} . Then we say that the function f(z) is subordinate to F(z) in \mathbb{U} , if there exists an analytic function w(z) in \mathbb{U} such that $|w(z)| \leq 1$ and f(z) = F(w(z)), denote by $f \prec F$ or $f(z) \prec F(z)$. If F(z) is univalent in \mathbb{U} , then the subordination is equivalent to f(0) = F(0) and $f(\mathbb{U}) \subset F(\mathbb{U})$.

Now, we denote by $S^*(A, B)$ and C(A, B) the subclasses of A as follows:

(1)
$$\mathcal{S}^*(A,B) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz}, z \in \mathbb{U} \right\}$$

and

(2)
$$\mathcal{C}(A,B) = \left\{ f \in \mathcal{A} : \exists g \in \mathcal{S}^*(A,B) \text{ such that } \frac{zf'(z)}{g(z)} \prec \frac{1+Az}{1+Bz}, z \in \mathbb{U} \right\},$$

respectively. For $A = 1 - 2\alpha$ and B = -1 in (1) and (2), we can obtain the classes $\mathcal{S}^*(1 - 2\alpha, -1) = \mathcal{S}^*(\alpha)$ and $\mathcal{C}(1 - 2\alpha, -1) = \mathcal{C}(\alpha)$, consisting of functions which are starlike of order α and close-to-convex of order α , respectively. Especially, we can obtain the classes $\mathcal{S}^*(1, -1) = \mathcal{S}^*$ and $\mathcal{C}(1, -1) = \mathcal{C}$ which

Received March 20, 2012; Revised May 10, 2012.

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 30C45,\ 30C50.$

 $Key\ words\ and\ phrases.$ close-to-convex functions, Janowski type, sakaguchi functions, k-symmetric points.

The research was supported by Kyungsung University Research Grants in 2013.

are the classes of starlike functions and close-to-convex functions, respectively, for A = 1 and B = -1.

Sakaguchi [6] once introduced a classes S_s^* of functions starlike with respect to symmetric points, it consists of functions $f(z) \in S$ satisfying

(3)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)-f(-z)}\right\} > 0 \ (z \in \mathbb{U}).$$

Following him, many authors discussed this class and its subclasses (see [4], [5], [7], [8], [10], [11], [12] and [13]). In the present paper, we introduced the following class of analytic functions with respect to k-symmetric points, and obtain some interesting results.

Definition. Let $S_s^{(k)}(A, B)$ denote the class of functions in S satisfying the inequality

(4)
$$\left| \frac{zf'(z)}{f_k(z)} - 1 \right| < \left| A - B \frac{zf'(z)}{f_k(z)} \right| \quad (z \in \mathbb{U}),$$

where $-1 \le A < B \le 1, k \ge 1$ is a fixed positive integer and $f_k(z)$ is defined by the following equality

(5)
$$f_k(z) = \frac{1}{k} \sum_{\mu=0}^{k-1} \varepsilon^{-\mu} f(\varepsilon^{\mu} z),$$

where $\varepsilon = \exp(\frac{2\pi i}{k})$ with $k \in \mathbb{Z}$.

By the definition of $f_k(z)$, we can easily obtain the expansion of $f_k(z)$. That is, if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, then

$$f_k(z) = z + \sum_{n=2}^{\infty} \sigma_k(n) a_n z^n,$$

where $\sigma_k(n) = \begin{cases} 1, n = lk+1 \\ 0, n \neq lk+1 \end{cases}$ $(l \in \mathbb{N}_0)$. And we note that $f_1(z) = f(z)$ and $f_2(z) = \frac{1}{2}(f(z) - f(-z))$.

Now the following identities follow directly from the above definition [3]:

(6)
$$f_k(\varepsilon^{\mu}z) = \varepsilon^{\mu} f_k(z),$$

(7)
$$f'_k(\varepsilon^{\mu}z) = f_k(z) = \frac{1}{k} \sum_{\mu=0}^{k-1} f'(\varepsilon^{\mu}z).$$

Remark 1.1. Using the definition of the subordination, we can easily obtain that the equivalent condition of belonging to the class $S_s^{(k)}(A, B)$ $(-1 \le B < A \le 1)$ is

$$\frac{zf'(z)}{f_k(z)} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}).$$

It is easy to know that $\mathcal{S}_s^{(2)}(1,-1) = \mathcal{S}_s^*$ and $\mathcal{S}_s^{(1)}(1,-1) = \mathcal{S}^*$, so $\mathcal{S}_s^{(k)}(A,B)$ has a meaning as the generalization of \mathcal{S}_s^* and \mathcal{S}^* , respectively.

In this paper, we will discuss the coefficient inequalities, integral representations and some invariance properties of functions belonging to the class $S_s^{(k)}(A,B)$.

2. Coefficient inequalities

Theorem 2.1. Let $f(z) \in \mathcal{S}_s^{(k)}(A, B)$. Then $f_k(z) \in \mathcal{S}^*(A, B) \subset \mathcal{S}$.

Proof. For $f(z) \in \mathcal{S}_s^{(k)}(A,B)$, we can obtain $\frac{zf'(z)}{f_k(z)} \prec \frac{1+Az}{1+Bz}$. Substituting z by $\varepsilon^{\mu}z$ respectively $(\mu=0,1,2,\ldots,k-1)$, then

(8)
$$\frac{\varepsilon^{\mu}zf'(\varepsilon^{\mu}z)}{f_k(\varepsilon^{\mu}z)} \prec \frac{1+A\varepsilon^{\mu}z}{1+B\varepsilon^{\mu}z} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}).$$

According to the definition of $f_k(z)$ and $\varepsilon = \exp(\frac{2\pi i}{k})$, we know $\varepsilon^{-\mu} f_k(\varepsilon^{\mu} z) = f_k(z)$. Then the equation (8) becomes

(9)
$$\frac{zf'(\varepsilon^{\mu}z)}{f_k(z)} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}).$$

Let $\mu = 0, 1, 2, \dots, k-1$ in (9) respectively, and sum them we can get

(10)
$$\frac{zf_k'(z)}{f_k(z)} = \frac{1}{k} \sum_{\mu=0}^{k-1} \frac{zf'(\varepsilon^{\mu}z)}{f_k(z)} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}).$$

That is, $f_k(z) \in \mathcal{S}^*(A, B) \subset \mathcal{S}$.

Putting A=1, B=-1 and k=2 in Theorem 2.1, we can obtain the following corollary.

Corollary 2.2. Let $f(z) \in \mathcal{S}_s^*$, defined as (3). Then the odd function $\frac{1}{2}(f(z) - f(-z))$ is a starlike function.

Remark 2.3. Let $f(z) \in \mathcal{S}_s^{(k)}(A,B)$. Then f(z) is a close-to-convex function.

We need the following lemma to give the coefficient estimate of functions in the class $\mathcal{S}_s^{(k)}(A,B)$.

Lemma 2.4. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ and satisfy the inequality

$$\left|\frac{zf'(z)}{g(z)}-1\right| \leq \left|A-B\frac{zf'(z)}{g(z)}\right| \quad (z \in \mathbb{U}),$$

where $-1 \le B < A \le 1$. Then for $n \ge 2$, we have

(11)
$$|na_n - b_n|^2 \le 2(1 + |AB|) \sum_{j=1}^{n-1} j|a_j||b_j|.$$

Proof. Let f(z) and g(z) satisfy the inequality

(12)
$$\left| \frac{zf'(z)}{g(z)} - 1 \right| \le \left| A - B \frac{zf'(z)}{g(z)} \right| \quad (z \in \mathbb{U}).$$

Then (12) is equivalent to

$$\frac{zf'(z)}{g(z)} \prec \frac{1+Az}{1+Bz}.$$

By the definition of subordination, there exists a Schwarz function w(z) which satisfies w(0) = 0, |w(z)| < |z| and

$$\frac{zf'(z)}{g(z)} = \frac{1 + Aw(z)}{1 + Bw(z)} \quad (z \in \mathbb{U})$$

or

$$g(z) - zf'(z) = (Bzf'(z) - Ag(z))w(z) \quad (z \in \mathbb{U}).$$

Now if $w(z) = \sum_{n=1}^{\infty} c_n z^n$, then

(13)
$$\sum_{n=2}^{\infty} (b_n - na_n) z^n = \left((B - A)z + \sum_{n=2}^{\infty} (Bna_n - Ab_n) z^n \right) \left(\sum_{n=1}^{\infty} c_n z^n \right).$$

Comparing the coefficient of z^n in (13), we have

(14)

$$b_n - na_n$$

$$= (B - A)c_{n-1} + (2Ba_2 - Ab_2)c_{n-2} + \dots + ((n-1)Ba_{n-1} - Ab_{n-1})c_1.$$

Thus the coefficient combination on the right-hand side of (14) depends only on the coefficients combination $Ba_1 - Ab_1, \ldots, (n-1)Ba_{n-1} - Ab_{n-1}$ on the left-hand side. Hence, for $n \geq 2$, we can write

(15)
$$\sum_{j=2}^{n} (b_j - ja_j)z^j + \sum_{j=n+1}^{\infty} d_j z^j = \left(\sum_{j=1}^{n-1} (jBa_j - Ab_j)z^j\right) w(z),$$

with $a_1 = b_1 = 1$. Squaring the modulus of the both sides of (15) and integrating along |z| = r < 1, and using the fact that |w(z)| < 1, we obtain

$$\sum_{j=2}^{n} |b_j - ja_j|^2 r^{2j} + \sum_{j=n+1}^{\infty} |d_j|^2 r^{2j} < \sum_{j=1}^{n-1} |jBa_j - Ab_j|^2 r^{2j}.$$

Letting $r \to 1$ on the left-hand side of this inequality, we obtain

$$\sum_{j=2}^{n} |b_j - ja_j|^2 \le \sum_{j=1}^{n-1} |jBa_j - Ab_j|^2.$$

This implies that

$$|na_n - b_n|^2 \le \sum_{j=1}^{n-1} (|jBa_j - Ab_j|^2 - |b_j - ja_j|^2)$$

$$\le \sum_{j=1}^{n-1} ((B^2 - 1)j^2 |a_j|^2 + (A^2 - 1)|b_j|^2 + 2j(1 + |AB|)|a_j||b_j|)$$

$$\le 2(1 + |AB|) \sum_{j=1}^{n-1} j|a_j||b_j|,$$

since $-1 \le B < A \le 1$, hence the proof of Lemma 2.4 is complete.

Applying the above Lemma 2.4, we give the following theorem about to the coefficient estimate of functions in $S_s^{(k)}(A, B)$.

Theorem 2.5. Let $f(z) \in \mathcal{S}_s^{(k)}(A, B)$. Then we have (i) For n = lk + 1 $(l \in \mathbb{N}_0)$,

(16)
$$(n-1)^2 |a_n|^2 \le 2(1+|AB|) \sum_{j=0}^{l-1} (jk+1)|a_{jk+1}|^2.$$

(ii) For $n \neq lk + 1$ $(l \in \mathbb{N}_0)$,

(17)
$$n^{2}|a_{n}|^{2} \leq 2(1+|AB|) \sum_{j=0}^{\left[\frac{n-1}{k}\right]} (jk+1)|a_{jk+1}|^{2},$$

where $\left[\frac{n-1}{k}\right]$ denotes the biggest integer among the integers smaller than $\frac{n-1}{k}$.

Proof. We note that zf'(z) and $f_k(z)$ satisfy the condition of Lemma 2.4. And, at the same time, by the definition of $f_k(z)$ we have

$$f_k(z) = z + \sum_{n=2}^{\infty} \sigma_k(n) a_n z^n$$
$$= z + \sum_{l=1}^{\infty} a_{lk+1} z^{lk+1}.$$

Using Lemma 2.4, let n = lk + 1 in (11), we can get (16). And if $n \neq lk + 1$, from (11), we can get (17).

Next, we give that sufficient condition for functions belonging to the class $S_s^{(k)}(A, B)$.

Theorem 2.6. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in \mathbb{U} . If for $-1 \leq B < A \leq 1$, we have

$$\sum_{n=2, n\neq lk+1}^{\infty} (1+|B|)n|a_n| + \sum_{l=1}^{\infty} (lk+(A-B)(lk+1))|a_{lk+1}| \le A-B.$$

Then
$$f(z) \in \mathcal{S}_s^{(k)}(A, B)$$
.

Proof. At first, we note that $f_k(z) = z + \sum_{n=2}^{\infty} \sigma_k(n) a_n z^n$ for $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. For the proof of Theorem 2.6, it suffices to show that the values for zf'/f_k satisfy

$$\left| \frac{zf'(z) - f_k(z)}{Af_k(z) - Bzf'(z)} \right| \le 1.$$

And we have

$$\left| \frac{zf'(z) - f_k(z)}{Af_k(z) - Bzf'(z)} \right| = \left| \frac{\sum_{n=2}^{\infty} (n - \sigma_k(n)) a_n z^n}{(A - B)z + \sum_{n=2}^{\infty} (A\sigma_k(n) - Bn) a_n z^n} \right|$$

$$\leq \frac{\sum_{n=2}^{\infty} (n - \sigma_k(n)) |a_n| |z|^{n-1}}{(A - B) - \sum_{n=2}^{\infty} |A\sigma_k(n) - Bn| |a_n| |z|^{n-1}}$$

$$\leq \frac{\sum_{n=2}^{\infty} (n - \sigma_k(n)) |a_n|}{(A - B) - \sum_{n=2}^{\infty} |A\sigma_k(n) - Bn| |a_n|}.$$

This last expression is bounded above by 1 if

$$\sum_{n=2}^{\infty} (n - \sigma_k(n))|a_n| \le (A - B) - \sum_{n=2}^{\infty} |A\sigma_k(n) - Bn||a_n|,$$

which is equivalent to

(18)
$$\sum_{n=2}^{\infty} (n - \sigma_k(n) + |A\sigma_k(n) - Bn|)|a_n| \le A - B.$$

Hence
$$\left|\frac{zf'(z)-f_k(z)}{Af_k(z)-Bzf'(z)}\right| \leq 1$$
, and Theorem 2.6 is proved.

Corollary 2.7. For k = 2, $A = 1 - 2\alpha$ and B = -1 in Theorem 2.6, we can obtain the result in [1].

3. Integral representations and invariance properties

We give the integral representation of functions in the class $S_s^{(k)}(A, B)$ and investigate the invariance properties of the following operators:

$$F(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} f(t) dt$$

and

$$f_{\lambda}(z) = (1 - \lambda)z + \lambda f(z),$$

where $m \in \mathbb{N}$ and $0 \le \lambda \le 1$. And we introduce some lemmas we need.

Lemma 3.1 ([6]). Let N(z) be regular and D(z) starlike in \mathbb{U} and N(0) = D(0) = 0. Then for $-1 \le B < A \le 1$,

$$\frac{N'(z)}{D'(z)} \prec \frac{1 + Az}{1 + Bz}$$

implies that

$$\frac{N(z)}{D(z)} \prec \frac{1 + Az}{1 + Bz}.$$

Lemma 3.2 ([2]). If $g(z) \in S^*(A, B)$, then

$$G(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} g(t) dt \in \mathcal{S}^*(A, B).$$

In Theorems 3.3 and 3.4, we give the integral representations of functions in $S_s^{(k)}(A, B)$.

Theorem 3.3. Let $f(z) \in \mathcal{S}_s^{(k)}(A,B)$. Then we have

(19)
$$f_k(z) = z \cdot \exp\left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{\varepsilon^{\mu} \zeta} \frac{w(\zeta)}{\zeta (1 + Bw(\zeta))} d\zeta \right\},$$

where $f_k(z)$ is defined by equality (5), w(z) is analytic in \mathbb{U} and w(0) = 0, |w(z)| < 1.

Proof. Let $f(z) \in \mathcal{S}_s^{(k)}(A, B)$, from the definition of the subordination, we have

(20)
$$\frac{zf'(z)}{f_k(z)} = \frac{1 + Aw(z)}{1 + Bw(z)},$$

where w(z) is analytic in \mathbb{U} and w(0) = 0, |w(z)| < 1. Substituting z by $\varepsilon^{\mu}z$ respectively $(\mu = 0, 1, 2, ..., k - 1)$, we have

(21)
$$\frac{zf'(\varepsilon^{\mu}z)}{\varepsilon^{-\mu}f_k(\varepsilon^{\mu}z)} = \frac{1 + Aw(\varepsilon^{\mu}z)}{1 + Bw(\varepsilon^{\mu}z)}$$

for $\mu=0,1,2,\ldots,k-1,$ and $z\in\mathbb{U}.$ Using the equality (6) and (7), sum (21) we can obtain

$$\frac{zf'_k(z)}{f_k(z)} = \frac{1}{k} \sum_{\mu=0}^{k-1} \frac{1 + Aw(\varepsilon^{\mu}z)}{1 + Bw(\varepsilon^{\mu}z)},$$

and equivalently,

(22)
$$\frac{f'_k(z)}{f_k(z)} - \frac{1}{z} = (A - B)\frac{1}{k} \sum_{\mu=0}^{k-1} \frac{w(\varepsilon^{\mu}z)}{z(1 + Bw(\varepsilon^{\mu}z))}.$$

Integrating equality (22), we have

$$\log \frac{f_k(z)}{z} = (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^z \frac{w(\varepsilon^{\mu} \zeta)}{\zeta (1 + Bw(\varepsilon^{\mu} \zeta))} d\zeta$$
$$= (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{\varepsilon^{\mu} z} \frac{w(\zeta)}{\zeta (1 + Bw(\zeta))} d\zeta.$$

Therefore, arrange the above equality for $f_k(z)$, we can obtain

$$f_k(z) = z \cdot \exp\left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{\varepsilon^{\mu} \zeta} \frac{w(\zeta)}{\zeta(1 + Bw(\zeta))} d\zeta \right\},\,$$

and so the proof of Theorem 3.3 is complete.

Theorem 3.4. Let $f(z) \in \mathcal{S}_s^{(k)}(A, B)$. Then we have

$$f(z) = \int_0^z \exp\left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{\varepsilon^{\mu} \zeta} \frac{w(t)}{t(1 + Bw(t))} dt \right\} \cdot \left(\frac{1 + Aw(\zeta)}{1 + Bw(\zeta)} \right) d\zeta,$$

where w(z) is analytic in \mathbb{U} , w(0) = 0 and |w(z)| < 1.

Proof. Let $f(z) \in \mathcal{S}_s^{(k)}(A, B)$, from equalities (19) and (20) we have

$$f'(z) = \frac{f_k(z)}{z} \cdot \left(\frac{1 + Aw(z)}{1 + Bw(z)}\right)$$
$$= \exp\left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{e^{\mu} z} \frac{w(\zeta)}{\zeta(1 + Bw(\zeta))} d\zeta \right\} \cdot \left(\frac{1 + Aw(z)}{1 + Bw(z)}\right).$$

Integrating the above equality, we can obtain

$$f(z) = \int_0^z \exp\left\{ (A - B) \frac{1}{k} \sum_{\mu=0}^{k-1} \int_0^{\varepsilon^{\mu} \zeta} \frac{w(t)}{t(1 + Bw(t))} dt \right\} \cdot \left(\frac{1 + Aw(\zeta)}{1 + Bw(\zeta)} \right) d\zeta.$$

Next, we investigate two invariance properties for the functions in $\mathcal{S}_s^{(k)}(A, B)$.

Theorem 3.5. If $f(z) \in \mathcal{S}_s^{(k)}(A, B)$, then so does

(23)
$$F(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} f(t) dt$$

for m = 1, 2,

Proof. By using the equation (23), we have

$$F_k(z) = \frac{m+1}{z^m} \int_0^z t^{m-1} f_k(t) dt$$

and

$$\frac{zF'(z)}{F(z)} = -m + \frac{z^m f(z)}{\int_0^z t^{m-1} f(t) dt}.$$

Hence

(24)
$$\frac{zF'(z)}{F_k(z)} = \left(-m + \frac{z^m f(z)}{\int_0^z t^{m-1} f(t) dt}\right) \frac{F(z)}{F_k(z)}$$

$$= \frac{z^m f(z) - m \int_0^z t^{m-1} f(t) dt}{\int_0^z t^{m-1} f(t) dt}$$

$$:= \frac{N(z)}{D(z)}.$$

Since $f_k \in \mathcal{S}^*(A, B)$, by Lemma 3.2, we note that $F_k(z) \in \mathcal{S}^*(A, B)$. Differentiating (24), we have

$$\frac{N'(z)}{D'(z)} = \frac{zf'(z)}{f_k(z)} \prec \frac{1 + Az}{1 + Bz}.$$

By Lemma 3.1, we conclude that

$$\frac{N(z)}{D(z)} \prec \frac{1 + Az}{1 + Bz}.$$

Hence we have $F(z) \in \mathcal{S}_s^{(k)}(A, B)$.

Theorem 3.6. If $f(z) \in \mathcal{S}_s^{(k)}(A,B)$ and $f_{\lambda}(z) = (1-\lambda)z + \lambda f(z), 0 \le \lambda \le 1$,

- (i) for B = 0, $f_{\lambda}(z) \in \mathcal{S}_{s}^{(k)}(A, 0)$.
- (ii) for $|z| < \frac{1}{B} \sin(\frac{B}{2A}\pi)$, B > 0, $f_{\lambda}(z) \in \mathcal{S}_{s}^{(k)}(A, B)$. (iii) for $|z| < \frac{1}{B} \sin(\frac{B}{2B-A}\frac{\pi}{2})$, B < 0, $f_{\lambda}(z) \in \mathcal{S}_{s}^{(k)}(A, B)$.

Proof. Since $f(z) \in \mathcal{S}_s^{(k)}(A, B)$,

$$\frac{zf'(z)}{f_k(z)} \prec \frac{1 + Az}{1 + Bz}.$$

Put

$$f_{\lambda,k}(z) = \frac{1}{k} \sum_{\mu=0}^{k-1} \varepsilon^{-\mu} f_{\lambda}(\varepsilon^{\mu} z).$$

Then $f_{\lambda,k}(z) = (1-\lambda)z + \lambda f_k(z)$ and $zf'_{\lambda}(z) = (1-\lambda)z + \lambda z f'(z)$. Hence

$$\frac{zf_{\lambda}'(z)}{f_{\lambda,k}(z)} = \frac{(1-\lambda)\frac{z}{f_k(z)} + \lambda\frac{zf_{\lambda}'(z)}{f_k(z)}}{(1-\lambda)\frac{z}{f_k(z)} + \lambda}.$$

Since $f_k \in \mathcal{S}^*(A, B)$,

(25)
$$\frac{tf_k(sz)}{sf_k(tz)} \prec \begin{cases} (\frac{1+Bsz}{1+Btz})^{\frac{A-B}{B}}, B \neq 0, \\ \exp(A(s-t)z), B = 0. \end{cases}$$

Put s = 1 and t = 0 into (25), then we can obtain

(26)
$$\frac{f_k(z)}{z} \prec \begin{cases} (1 + Bz)^{\frac{A-B}{B}}, B \neq 0, \\ \exp(Az), B = 0. \end{cases}$$

For the case B=0, it suffices to show that

(27)
$$\left| \frac{(1-\lambda)\frac{z}{f_k(z)} + \lambda \frac{zf'(z)}{f_k(z)}}{(1-\lambda)\frac{z}{f_k(z)} + \lambda} - 1 \right| < A.$$

Since $\frac{zf'(z)}{f_k(z)} \prec 1 + Az$, $\left|\frac{zf'(z)}{f_k(z)} - 1\right| < A$. Since $\frac{f_k(z)}{z} \prec \exp(Az)$, there exists a Schwarz function w_2 which satisfies $w_2(0) = 0$ and $|w_2| < 1$ in $\mathbb U$ such that

$$\frac{f_k(z)}{z} = \exp(Aw_2(z)).$$

Hence

$$\left| \frac{(1-\lambda)\frac{z}{f_k(z)} + \lambda \frac{zf'(z)}{f_k(z)}}{(1-\lambda)\frac{z}{f_k(z)} + \lambda} - 1 \right| = \lambda \left| \frac{\frac{zf'(z)}{f_k(z)} - 1}{(1-\lambda)\frac{z}{f_k(z)} + \lambda} \right| < \frac{A\lambda}{|(1-\lambda)\exp(-Aw_2(z)) + \lambda|}.$$

Using the fact that $|w_2(z)| < 1$ in \mathbb{U} , we can obtain

$$|(1 - \lambda) \exp(-Aw_2(z)) + \lambda| > \lambda,$$

by simple calculations. And this implies that

$$\frac{zf'(z)}{f_{\lambda,k}(z)} \prec 1 + Az$$

in \mathbb{U} . For the case $B \neq 0$, we need to show that

$$(28) \qquad \left| \frac{(1-\lambda)\frac{z}{f_{k}(z)} + \lambda \frac{zf'(z)}{f_{k}(z)}}{(1-\lambda)\frac{z}{f_{k}(z)} + \lambda} - 1 \right| < \left| A - B \frac{(1-\lambda)\frac{z}{f_{k}(z)} + \lambda \frac{zf'(z)}{f_{k}(z)}}{(1-\lambda)\frac{z}{f_{k}(z)} + \lambda} \right|.$$

And (28) is equivalent to

$$\left| \frac{zf'(z)}{f_k(z)} - 1 \right| < \left| (A - B)(\frac{1}{\lambda} - 1)\frac{z}{f_k(z)} + A - B\frac{zf'(z)}{f_k(z)} \right|.$$

Since $\frac{zf'(z)}{f_k(z)} \prec \frac{1+Az}{1+Bz}$,

$$\left| \frac{zf'(z)}{f_k(z)} - 1 \right| < \left| A - B \frac{zf'(z)}{f_k(z)} \right|.$$

We note that

(29)
$$\left| \arg \left(\frac{z}{f_k(z)} \right) - \arg \left(A - B \frac{zf'(z)}{f_k(z)} \right) \right| < \frac{\pi}{2}$$

implies that

$$\left| A - B \frac{zf'(z)}{f_k(z)} \right| < \left| (A - B) \left(\frac{1}{\lambda} - 1 \right) \frac{z}{f_k(z)} + A - B \frac{zf'(z)}{f_k(z)} \right|.$$

Hence it suffices to show that (29) holds. Since $\frac{zf'(z)}{f_k(z)} \prec \frac{1+Az}{1+Bz}$,

(30)
$$\left| \arg \left(A - B \frac{z f'(z)}{f_k(z)} \right) \right| \le \arcsin(|B|r).$$

and

(31)
$$\left| \arg \left(\frac{z}{f_k(z)} \right) \right| = \left| \arg \left(\frac{f_k(z)}{z} \right) \right| \le \frac{A - B}{B} \arcsin(Br).$$

Hence, by (30), (31) and the hypotheses of Theorem 3.6, we can easily show that

$$\left| \arg \left(\frac{z}{f_k(z)} \right) - \arg \left(A - B \frac{zf'(z)}{f_k(z)} \right) \right|$$

$$\leq \left| \arg \left(\frac{z}{f_k(z)} \right) \right| + \left| \arg \left(A - B \frac{zf'(z)}{f_k(z)} \right) \right|$$

$$\leq \arcsin(|B|r) + \frac{A - B}{B} \arcsin(Br)$$

$$< \frac{\pi}{2}$$

and this completes the proof of Theorem 3.6.

References

- [1] N. E. Cho, O. S. Kwon, and S. Owa, Certain subclasses of Sakaguchi functions, Southeast Asian Bull. Math. 17 (1993), no. 2, 121–126.
- [2] R. M. Goel and B. S. Mehrok, Some invariance properties of a subclass of close-to-convex functions, Indian J. Pure Appl. Math. 12 (1981), no. 10, 1240–1249.
- [3] S. S. Miller and P. T. Mocanu. Differential Subordinations: Theory and Applications, Marcel Dekker Inc, New York, Basel, 1999.
- [4] R. Parvatham and S. Radha, On α -starlike and α -close-to-convex functions with respect to n-symmetric points, Indian J. Pure Appl. Math. 17 (1986), no. 9, 1114–1122.
- [5] V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 20 (2004), no. 1, 31–37.
- [6] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75.
- [7] T. N. Shanmugam, Convolution and differential subordination, Int. J. Math. Math. Sci. 12 (1989), no. 2, 333–340.
- [8] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37 (1985), no. 1, 48-61.
- [9] E. M. Silvia, Subclass of close-to-convex functions, Int. J. Math. Math. Sci. 6 (1983), no. 3, 449-458.
- [10] J. Sokol et al., On some subclass of starlike functions with respect to symmetric points, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. 12 (1991), 65–73.
- [11] J. Stankiewicz, Some remarks on functions starlike with respect to symmetric points, Ann. Univ. Mariae Curie-Sklodowska Sect. A 19 (1970), 53–59.

- [12] T. V. Sudharsan, P. Balasubrahmanyam, and K. G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2 (1998), no. 1, 57– 68.
- [13] J. Thangamani, On starlike functions with respect to symmetric points, Indian J. Pure Appl. Math. 11 (1980), no. 3, 392–405.

OHSANG KWON
DEPARTMENT OF MATHEMATICS
KYUNGSUNG UNIVERSITY
BUSAN 608-736, KOREA
E-mail address: oskwon@ks.ac.kr

Youngjae Sim Department of Mathematics Kyungsung University Busan 608-736, Korea E-mail address: yjsim@ks.ac.kr