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ON SEQUENCE OF FUNCTIONS

Ibrahim A. Salehbhai, Jyotindra C. Prajapati, and Ajay K. Shukla

Abstract. Operational techniques have drawn the attention of several
researchers in the study of sequence of functions and polynomials. An
attempt is made to introduce a new sequence of functions by using op-
erational techniques. Some generating relations and finite summation
formulae have been obtained. The corresponding MAPLE code for ob-
taining above sequence of functions for different values of parameters was
also discussed.

1. Introduction

Operational techniques [1], also known as operational Calculus, have drawn
the attention of several researchers in the study of sequence of functions and
polynomials. The idea of representing the processes of calculus, derivation, and
integration, as operators is called operational technique. By operational tech-
nique, the problems in analysis, in particular differential equations are trans-
formed into algebraic problems, usually the problem of solving a polynomial
equation.

The key element of the operational technique is to consider differentiation
as an operator D ≡ d

dx
acting on functions. Linear differential equations can

then be recast in the form of an operator valued function F (D) of the operator
D acting on the unknown function equals the known function. Solutions are
then obtained by making the inverse operator of F act on the known function.

A new sequence of functions {V (α,β)
n (x; a, k, s) : n = 0, 1, 2, . . .} is introduced

in this paper as:

(1.1) V (α,β)
n (x; a, k, s) =

1

n!
x−βEα{pk(x)}(T a,s

x )n
[

xβEα{−pk(x)}
]

,

where T a,s
x ≡ xa(s+ xD), D ≡ d

dx
, a and s are constants, β ≥ 0, k is finite and

non-negative integer, pk(x) is a polynomial in x of degree k, x ∈ R and Eα(z)
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is the Mittag-Leffler function (M. N. Berberan-Santos [2]) defined as:

Eα(z) =

∞
∑

n=0

zn

Γ(αn+ 1)
, α ≥ 0.

Some generating relations and finite summation formulae have been obtained
by using the properties of the differential operators T a,s

x ≡ xa(s+ xD), T a,1
x ≡

xa(1+ xD), where D ≡ d
dx
, based on the work of Mittal [3], Patil and Thakare

[4], Srivastava and Singh [7].
Some well-known definitions and facts are listed as below:

Generalized Laguerre polynomials (Srivastava and Manocha [9]) defined as:

(1.2) L(α)
n (x) =

x−α−n−1ex

n!
(x2D)n[xα+1e−x].

Hermite polynomials (Rainville [6]) defined as:

(1.3) Hn(x) = (−1)n exp(x2)Dn[exp(−x2)].

Konhauser polynomials of first kind (Srivastava [8]) defined as:

(1.4) Y α
n (x; k) =

x−kn−α−1ex

knn!
(xk+1D)n[xα+1e−x].

Konhauser polynomials of second kind (Srivastava [8]) defined as:
for k is a positive integer,

(1.5) Zα
n (x; k) =

Γ(kn+ α+ 1)

n!

n
∑

j=0

(−1)j
(

n

j

)

xkj

Γ(kj + α+ 1)
.

Lα,β
n (x) polynomials (Prabhakar and Suman [5]) defined as:

(1.6) Lα,β
n (x) =

Γ(αn+ β + 1)

n!

n
∑

k=0

(−n)kx
k

Γ(αk + β + 1)k!
,

Reβ > −1 and α is any complex number with Reα > 0.
The following relations are established by Prabhakar and Suman [5]

(1.7) Lk,β
n (xk) = Zβ

n (x; k),

(1.8) L1,β
n (x) = Lβ

n(x).

Mittal [3] discussed following result:

(1.9) exp(T a,s
x ) [xγf (x)] = x−γ(1− axat)−(

γ+s
a )f

(

x(1 − axat)−
1
a

)

.

The relationships between sequence of functions (1.1) & polynomials (1.2)-(1.6)
for appropriate values of α, β, a, k and s have been obtained. Some cases for
α 6= 1 discussed with graphs in present paper.
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2. Generating relations

The generating relations of (1.1) have been obtained as:

(2.1)

∞
∑

n=0

x−anV (α,β)
n (x; a, k, s)tn

= (1− at)−(
β+s
a )Eα[pk(x)]Eα[−pk{x(1− at)−

1
a }].[−pk{x(1 + at)

1
a }],

(2.2)

∞
∑

n=0

x−anV (α,β−an)
n (x; a, k, s)tn

= (1 + at)
β+s
a

−1Eα[pk(x)]Eα[−pk{x(1 + at)
1
a }],

(2.3)

∞
∑

m=0

x−am

(

m+ n

n

)

V
(α,β)
n+m (x; a, k, s) tm

= (1− at)
−(β+s

a ) Eα{pk(x)}
Eα

[

pk{x (1− at)−
1
a

]V (α,β)
n {x (1− at)

−
1
a ; a, k, s}.

Proof of (2.1). From (1.1), we consider
∞
∑

n=0

V (α,β)
n (x; a, k, s)tn = x−βEα{pk(x)} exp(tT a,s

x )[xβEα{−pk(x)}].

Further simplification gives

= x−βEα{pk(x)}xβ(1 − axat)−(
β+s
a )Eα[−pk{x(1− axat)−

1
a }]

= (1− axat)−(
β+s
a )Eα{pk(x)}Eα[−pk{x(1− axat)−

1
a }]

and replacing t by tx−a, this gives (2.1). �

Proof of (2.2). Again from (1.1), we have
∞
∑

n=0

x−anV (α,β−an)
n (x; a, k, s)tn

= x−βEα{pk(x)} exp(tT a,s
x )[xβ−anEα{−pk(x)}],

and simplifying the above equation, we get
∞
∑

n=0

x−anV (α,β−an)
n (x; a, k, s)tn

= x−βEα{pk(x)}xβ(1 + at)
β+s
a

−1Eα[−pk{x(1 + at)
1
a }]

× x−βEα{pk(x)}xβ(1 + at)
β+s
a

−1Eα[−pk{x(1 + at)
1
a }]

= (1 + at)
β+s
a

−1Eα[pk(x)]Eα[−pk{x(1 + at)
1
a }],

this proves (2.2). �
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Proof of (2.3). We can write (1.1) as:

(2.4) (T a,s
x )n[xβEα{−pk(x)}] = n!xβ 1

Eα{pk(x)}
V (α,β)
n (x; a, k, s)

or

exp(tT a,s
x ){(T a,s

x )n[xβEα{−pk(x)}]}

= n! exp(tT a,s
x )

{

xβ 1

Eα{pk(x)}
V (α,β)
n (x; a, k, s)

}

,

i.e.,
∞
∑

m=0

tm(T a,s
x )m+n

m!
[xβEα{−pk(x)}]

= n! exp(tT a,s
x )

{

xβ 1

Eα{pk(x)}
V (α,β)
n (x; a, k, s)

}

.

This can also be written as:

∞
∑

m=0

tm(T a,s
x )m+n

m!
[xβEα{−pk(x)}]

= n!xβ(1− axat)−(
β+s
a ) 1

Eα[pk{x(1 − axat)−
1
a }]

× V (α,β)
n {x(1− axat)−

1
a ; a, k, s},

use of (2.4), yields

∞
∑

m=0

1

m!n!
(m+ n)!xβ 1

Eα{pk(x)}
V

(α,β)
m+n (x; a, k, s)tm

= xβ(1 − axat)−(
β+s
a ) 1

Eα[pk{x(1− axat)−
1
a }]

× V (α,β)
n {x(1− axat)−

1
a ; a, k, s}.

Therefore,
∞
∑

m=0

(

m+ n

n

)

V
(α,β)
m+n (x; a, k, s)tm

= (1 − axat)−(
β+s
a ) Eα{pk(x)}

Eα[pk{x(1− axat)−
1
a }]

× V (α,β)
n {x(1 − axat)−

1
a ; a, k, s},

on replacing t by tx−a, this leads to (2.3). �
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3. Finite summation formulae

The finite sum formulae for (1.1) have been obtained as:

(3.1) V (α,β)
n (x; a, k, s) =

n
∑

m=0

1

m!
(axa)m

(

β

a

)

m

V
(α,0)
n−m (x; a, k, s),

(3.2) V (α,β)
n (x; a, k, s) =

n
∑

m=0

1

m!
(axa)m

(

β − γ

a

)

m

V
(α,γ)
n−m (x; a, k, s).

Proof of (3.1). We can write (1.1) as
(3.3)

V (α,β)
n (x; a, k, s)

=
1

n!
x−βEα{pk(x)}(T a,s

x )n
[

xxβ−1Eα{−pk(x)}
]

,

=
1

n!
x−βEα{pk(x)}x ×

n
∑

m=0

(

n

m

)

(T a,s
x )n−m [Eα{−pk(x)}] (T a,1

x )m
(

xβ−1
)

=
1

n!
x−β+1Eα{pk(x)}

n
∑

m=0

n!

m! (n−m)!
[Eα{−pk(x)}]xa(n−m)

× [(s+ xD) (s+ a+ xD) (s+ 2a+ xD) · · · (s+ (n−m− 1)a+ xD)]

× xam [(1 + xD) (1 + a+ xD) (1 + 2a+ xD) · · · (1 + (m− 1)a+ xD)]xβ−1

= Eα{pk(x)}
n
∑

m=0

1

m!(n−m)!
xan

×
n−m−1
∏

i=0

(s+ ia+ xD) [Eα{−pk(x)}] am
(

β

a

)

m

.

Putting β = 0 and replacing n by n−m in (1.1), we get

V
(α,0)
n−m (x; a, k, s) =

1

(n−m)!
Eα{pk(x)}(T a,s

x )n−m [Eα{−pk(x)}] ,

i.e.,

1

(n−m)!
(T a,s

x )n−m [Eα{−pk(x)}] =
1

Eα{pk(x)}
V

(α,0)
n−m (x; a, k, s),

this gives

(3.4)

1

(n−m)!

n−m−1
∏

i=0

(s+ ia+ xD) [Eα{−pk(x)}]

= xa(m−n) 1

Eα{pk(x)}
V

(α,0)
n−m (x; a, k, s).

Use of (3.3) and (3.4) immediately leads to (3.1). �



128 IBRAHIM A. SALEHBHAI, JYOTINDRA C. PRAJAPATI, AND AJAY K. SHUKLA

Proof of (3.2). Writing (1.1) as:

∞
∑

n=0

V (α,β)
n (x; a, k, s)tn = x−βEα{pk(x)} exp(T a,s

x )[xβEα{−pk(x)}],

where the above equation reduces to

∞
∑

n=0

V (α,β)
n (x; a, k, s)tn

= x−βEα{pk(x)}xβ(1 − axat)−(
β+s
a )Eα[−pk{x(1− axat)−

1
a }]

= (1− axat)−(
β+s
a )Eα[pk(x)]Eα[−pk{x(1− axat)−

1
a }]

= (1− axat)−(
γ+s
a )

∞
∑

m=0

(

β − γ

a

)

m

(axat)m

m!
Eα[pk(x)]

× Eα[−pk{x(1− axat)−
1
a }],

on applying equation (1.9), we arrived at

∞
∑

n=0

V (α,β)
n (x; a, k, s)tn

=

∞
∑

m=0

(

β − γ

a

)

m

(axat)m

m!
x−γEα{pk(x)} exp(T a,s

x ) [xγEα{−pk(x)}]

=

∞
∑

n=0

n
∑

m=0

(

β − γ

a

)

m

(axa)mtn

m!(n−m)!
x−γEα{pk(x)}(T a,s

x )n−m [xγEα{−pk(x)}]

=
∞
∑

m=0

∞
∑

n=0

(

β − γ

a

)

m

(axa)mtn+m

m!n!
x−γEα{pk(x)}(T a,s

x )n [xγEα{−pk(x)}] .

Now equating the coefficients of tn, we get

V (α,β)
n (x; a, k, s) =

n
∑

m=0

1

m!
(axa)m

(

β − γ

a

)

m

x−γ

(n−m)!

× Eα{pk(x)}(T a,s
x )n−m [xγEα{−pk(x)}]

and use of (1.1) which follows (3.2). �

Note: Finite summation formula (3.1) is a particular case of (3.2) for γ = 0
but proof of (3.1) is quite different.

4. Special cases

The several interesting special cases of V
(α,β)
n (x; a, k, s) are as follows:

(4.1) V (1,α)
n (x; a, k, s) = V (α)

n (x; a, k, s).
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For pk(x) = p1(x) = x, we get

(4.2)
V (1,α+1)
n (x; 1, 1, 0) = xnL(α)

n (x) = xnL1,α
n (x)

= xnZα
n (x; 1) = xnY α

n (x; 1),

(4.3) V
(0,β)
0 (x; a, 1, s) =

1

1− x2
,

(4.4) V
(0,β)
1 (x; a, 1, s) =

xa

1− x2

(

s+ β − x

1 + x

)

,

(4.5) V
( 1
2
,β)

0 (x; a, 1, s) = exp(2x2)
(

1− (erf(x))2)
)

,

(4.6)

V
( 1

2
,β)

1 (x; a, 1, s)

= xa exp(x2) (1 + (erf(x)))

[

(s+ β + 2x2) exp(x2) (1− (erf(x)))− 2x√
π

]

,

(4.7) V
(1,β)
0 (x; a, 1, s) = 1,

(4.8) V
(1,β)
1 (x; a, 1, s) = (s+ β − x)xa,

(4.9) V
(2,β)
0 (x; a, 1, s) = cosh

√
x cosh

√
−x,

(4.10)

V
(2,β)
1 (x; a, 1, s)

= xa cosh(
√
x)

[

(s+ β) cosh(
√
−x) +

√
−x

2
sinh

√
−x

]

,

taking pk(x) = p2(x) = x2

(4.11) V (1,0)
n (x;−1, 2, 0) =

(−x)n

n!
Hn(x).

5. A MAPLE implementation

Zeilberger [10] gave MAPLE programme for proving the hypergeometric
identities. In the light of his work, we also give MAPLE program for the
symbolic representations of sequence of functions (1.1).



130 IBRAHIM A. SALEHBHAI, JYOTINDRA C. PRAJAPATI, AND AJAY K. SHUKLA

The MAPLE program Listing:

> A:= proc (x, y) options operator, arrow; x*(diff(y,x)) end proc;

A : (x, y) → x

(

∂

∂u
y

)

.

> B := proc (s, y) options operator, arrow; s*y end proc;

B : (s, y) → s.

> C := proc (s, x, y) options operator, arrow;s, x, B(s,y)+A(x,y) end proc;

C : (s, x, y) → s, x,B (s, y) +A (x, y) .

> K := proc (a, b, c) options operator, arrow; c end proc;

K : (a, b, c) → c.

> E := proc (alpha, x) options operator, arrow; sum(xˆr/GAMMA(alpha*r+1),
r = 0. . . infinity) end proc;

E := (α, x) →
∞
∑

r=0

xr

Γ (αr + 1)
.

> F := proc (alpha, beta, n, a, k, s, x) options operator, arrow; xˆ(a*n)*K
((C@@n)(s, x, xˆbeta*E(alpha, -xˆk)))/factorial(n) end proc;

F := (α, β, n, a, k, s, x) → xanK
(

C(n)
(

s, x, xβE
(

α,−xk
)))

n!
.

> V := proc (alpha, beta, n, a, k, s, x) options operator, arrow; xˆ(-beta)*E
(alpha, xˆk)*F(alpha, beta, n, a, k, s, x) end proc;

V := (α, β, n, a, k, s, x) → x−βE
(

α, xk
)

F (α, β, n, a, k, s, x) .

Instructions:

To run the MAPLE program, start new MAPLE windows in ‘WORKSHEET
MODE’ with default ‘TYPESETTING RULES’. Type the above MAPLE pro-
gramme in ‘1-D Math input’. Type ‘V (alpha, beta, n, a, k, s, x);’ for n
= 0, 1, 2, . . . and press ‘Enter’ then MAPLE gives the symbolic expression for
V (α, β, n, a, k, s, x). We cannot evaluate directly V (α, β, n, a, k, s, x) without
entering the integer value of n due to (T a,s

x )n, where T a,s
x ≡ xa(s + xD) and

D ≡ d
dx

are operators.

Graphs:

Some graphs of new sequence of functions (1.1) are listed below:
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Figure 1

Figure 2
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Figure 3

Figure 4
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Figure 5

Figure 6
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