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CYCLIC CODES OF LENGTH 2n OVER Z4

Sung Sik Woo

Abstract. The purpose of this paper is to find a description of the cyclic

codes of length 2n over Z4. We show that any ideal of Z4[X]/(X2n
− 1)

is generated by at most two polynomials of the standard forms. We also
find an explicit description of their duals in terms of the generators.

1. Introduction

The purpose of this paper is to find all cyclic codes of length 2n over Z4.
A cyclic code of length m over Z4 is, by definition, a submodule of Zm

4 which
is stable under cyclic shift. Hence a cyclic code of length m over Z4 can be
identified with an ideal of Z4[X ]/(Xm − 1).

The cyclic codes of odd length over Z4 is described in [3]. To find the
descriptions of the ideals of R = Z4[X ]/(X2n − 1) we show that the ring R is
isomorphic to a seemingly simpler ring namely a ring of the form S = Z4[x]
where xn = 0 for some n, namely a nilpotent algebra.

To find the description of the ideals of a nilpotent algebra S we endow an
order structure on S. As for the case of a polynomial ring over a field, to
find the generator of an ideal we find the minimal elements of some special
forms with respect to the order structure of S. We show the ideal is generated
by those minimal elements. For this we prove something similar to Euclidean
algorithm over Z4 which is a key to find the ideals of S (§2).

In §3 we derive formulae for counting the number of elements of the ideals.
To find the dual of the cyclic codes we find polynomials which annihilates the
generators of the ideals of S in most economical way (§4). In §5 we relate the
ideals of a nilpotent algebra with the cyclic codes of length 2n and then we
show that the dual of the cyclic codes are basically given by the polynomials
which annihilates the generator of the ideal which corresponds to a cyclic codes
of length 2n over Z4 (§5). In §7, we give some examples.

This paper was referred in the papers [5, 6] and was not published. And
there are papers whose contents are overlapping with this paper [2, 6]. Still
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there are people who want to see this paper and I think it is worth to publish
it whose method is purely algebraic.

2. Euclidean algorithm modulo 4 and the ideals of nilpotent algebra

We consider a ring of the form S = Z4[X ]/(p(X)), where p(X) is a monic
polynomial of degree m such that Xn ∈ (p(X)) for some n, i.e., S = Z4[x]
with xn = 0 for some n. If l is the smallest integer, then we will say that the
nilpotency of x is l. We will call such ring as finite nilpotent Z4-algebra with

nilpotency l.
Typical examples we have in mind are S = Z4[X ]/(X2n − 2Xn) and S =

Z4[X ]/(X2n − 2X2n−1

). Later we show that the ring R = Z4[X ]/(X2n − 1) is
isomorphic to a ring of this type.

Throughout this paper a ring S will mean a nilpotent Z4 algebra of the
form S = Z4[X ]/(p(X)) unless otherwise stated. Whenever we talk about a
polynomial f(X) in S = Z4[X ]/(p(X)) we shall choose a representative with
degree less than m. In this section we fix the degree of p(X) say, deg(p(X)) =
m.

Our first observation is that the ring we are interested in is a local ring and
every ideal of S is primary. See [1] for the definition of primary ideals.

Proposition 1. The ring S is a local ring with the maximal ideal (2, X). Every
ideal J of S is primary with the radical rad(J) = (2, X).

Proof. Let m be a maximal ideal. Any nilpotent element is contained in every
prime ideal [1]. Since 2 is also nilpotent we see 2 and X belong to m. On
the other hand, (2, X) is a maximal ideal since S/(2, X) ∼= F2. Therefore
m = (2, X).

Let J be an ideal of S. Then 2 and X , being nilpotent, belong to the radical
rad(J) of J . Therefore rad(J) = (2, X). It is well known that if the radical of
J is a maximal ideal, then J is primary [1, Proposition 4.2]. �

We will use the following well known fact freely.

Lemma 1. Let R be a commutative ring. Let u be a unit. Then u + n is a

unit if n ∈ R is nilpotent.

We define an order on the set Z4 = {0̄, 1̄, 2̄, 3̄} in the usual way

0 < 1 < 2 < 3

where we omitted the bars as we will do from now on. On the set C =
{(a0, a1, . . . , am−1) | ai ∈ Z4} we define an ordering by endowing the lexi-
cographic order.

Let f(X) =
∑m−1

i=0 aiX
i, g(X) =

∑m−1
i=0 biX

i be polynomials in Z4[X ] with
deg(f), deg(g) < m. Then we define

f ≤ g if and only if (a0, a1, . . . , am−1) ≤ (b0, b1, . . . , bm−1).
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Proposition 2. Let J be an ideal of S contained in (2). Then J is of the form

(2Xr) for some r.

Proof. Let f(X) =
∑m−1

i=0 aiX
i ∈ J . Since J ⊆ (2) all of the coefficients of

f are in 2Z4. By noting that X is nilpotent we see that f(X) is of the form
2Xj·(unit). Now let 2Xr be the lowest degree among such expression. Now it
is obvious that J = (2Xr). �

Definition. Let us call the element of the form 2Xr a 2xr form.

We now prove existence of elements of some special form if the ideal is not
contained in the ideal (2) generated by 2 ∈ S.

Proposition 3. Let S be a nilpotent algebra. Let J be a nonzero ideal of S
which is not contained in the ideal (2) generated by 2 ∈ S. Then there are

nonzero elements of the form Xk + 2h(X) where h ∈ S of degree < k.

Proof. Let f(X) =
∑

i<m aiX
i be a nonzero polynomial in J . If a0 ∈ Z4 is a

unit, then f is a unit since X ∈ S is nilpotent. Hence we may assume a0 is
0 or 2. If the coefficients of the lowest degree terms are all units, then f is of
the form X i × (unit). Therefore X i is an element of J which is of the required
form.

Now suppose the coefficient of the nonzero term of lowest degree is 2. Let
ai be the unit coefficient of the lowest degree, i.e., ai−1, ai−2, . . . are in 2Z4.
Let l be the smallest integer such that X l = 0. Then X l−i−1f(X) is a desired
form. �

Definition. Let us call the polynomials of the form

g(X) = Xk + 2Xh1 + 2Xh2 + · · ·+ 2Xht

with ht < · · · < h1 < k < m an xk2 form. And we will often denote the
polynomial 2Xh1 + 2Xh2 + · · ·+ 2Xht by 2h(X).

Let us agree that the degree of the zero polynomial to be −∞ and Xk = 0
if k = −∞.

Theorem 1 (Euclidean algorithm modulo 4). Let J be an ideal of S which is

not contained in the ideal (2) generated by 2 ∈ S. Let g(X) = Xk +2h(X) ∈ J
be an xk2 form which is minimal with respect to the ordering defined above. Let

f(X) =
∑

i<m aiX
i ∈ J . Then we can write uniquely

f(X) = g(X)q(X) + r(X)

with q(X), r(X) ∈ S, deg(r) < k and r(X) ∈ 2Z4[X ].

Proof. Since g is monic we can write f = gq + r for some r ∈ S with deg(r) <
deg(g) = k uniquely by Euclidean algorithm over a commutative ring. We need
to prove that the coefficients of r are in 2Z4.

Assume that this is not true. If the coefficient of the lowest degree term is a
unit, then r(X) is of the form X i·(unit) with i < k since X is nilpotent. Hence
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X i ∈ J with i < k. But this contradict to the fact that g(X) = Xk + 2h(X)
is a minimal element. Hence we may assume that the coefficient of the lowest
degree term is 2.

Let r(X) = ajX
j + aj−1X

j−1 + · · ·+2X l with j < k and aj 6= 0. Let asX
s

be the lowest degree term with as a unit, that is as−1, as−2, . . . ∈ 2Z4. If s = j,
then r(X) is a xk2 form which is smaller than g(X). Hence j > s.

Then we see that Xk−jr(X) − ajg(X) ∈ J is a polynomial of degree < k
with the parity of the coefficients of Xs+k−j−1, Xs+k−j−2, . . . remain the same
as those of as−1, as−2, . . . since the coefficient of terms of degree < k in ajg(X)
is in 2Z4.

Let 2h(X) =
∑

i 2hiX
i. If the coefficients of Xk−1, Xk−2, . . . , Xs+k−j+1 in

Xk−jr(X) − ajg(X) happen to vanish namely Xk−jr(X) − ajg(X) = (as +
2ajhs)X

s+k−j+(as−1+2ajhs−1)X
s+k−j−1+· · ·+(2+2ajhl)X

l. Then as+2ajhs

is a unit and as−i + 2ajhs−i ∈ 2Z4 for i ≥ 1. But this gives us an element
in J which is smaller than g(X) after multiplying −1 if necessary. This is a
contradiction.

If this is not the case, then we can repeat the same process until all the
coefficients of the terms but the last (s− l) terms vanish without changing the
parity of the coefficients of the last (s − l) terms to get an element of J with
degree < deg(Xk−jr(X) − ajg(X)). Then obviously, the resulting element is
an xk2 form which is smaller than g(X) belonging to J . �

Let J be a nonzero ideal of S which is not contained in (2). Choose an
element of the form g(X) = Xk+2h(X) with h(X) ∈ S with deg(h) < k which
is the smallest with respect to the ordering defined above. We will show that
J is generated by g(X) and 2Xr for some r.

Theorem 2. Let J be an ideal of S which is not contained in (2). Let g(X) =
Xk + 2h(X) ∈ J be the smallest xk2 form in J and 2Xr be the smallest 2xr

form in J . Then J = (g(X), 2Xr) where −∞ ≤ r < l.

Proof. Obviously J ⊇ (g(X), 2Xr). Now let f ∈ J and write f(X) = g(X)q(X)
+2r(X). Then 2r(X) is of the form 2r(X) = 2Xt(1+X i1 + · · ·+X is). That is
2r(X) = 2Xt ·u for some unit u. Hence we can write f(X) = g(X)q(X)+2Xt·u
for some unit u. Since f(X) and g(X) belong to J we see that 2Xt ∈ J .
As 2Xr is the smallest 2xr form in J we have t ≥ r. Therefore f(X) =
g(X)q(X) + uXt−r(2Xr). Thus J ⊆ (g(X), 2Xr). �

Corollary 1. The proper ideals of S are of the form (2X i) for some i; or
(g(X), 2Xr) for some xk2 form g(X) and some r with −∞ ≤ r < deg(g).

Now we count the number of possible distinct ideals of a nilpotent algebra.

Proposition 4. The principal ideals of S are of the forms

(i) (2Xr) for some 2xr form 2Xr with (0 ≤ r < m);
(ii) (g(X)) for some xk2 form g(X).
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The number of ideals of the first type is m; the number of ideals of the second

type does not exceed
∑m−1

k=1 2k = 2m − 2.

Proof. May be the last statement worth checking. For each degree k of g(X)
we can choose {h1, h2, . . . , ht} with k > h1 > h2 > · · · > ht ≥ 0 for the degrees
of nonzero terms of h(X). And therefore there are 2k xk2 forms of degree k for
each 0 < k < m. Hence the number of ideals generated by an xk2 form does
not exceed

2 + 22 + · · ·+ 2m−1 = 2m − 2.
�

Proposition 5. The set of nonprincipal ideals of S are of the form (g(X), 2Xr)
where g(X) = Xk + 2Xh1 + · · ·+ 2Xht is an xk2 form with k < r < h1. Then

the number of nonprincipal ideals does not exceed

∑

m>k>j≥0

(k − j − 1)2j.

Proof. For each k choose the highest degree of nonzero term h1. Once we choose
k and h1 then there are k−h1−1 possible choices of 2xr form 2Xr (k < r < h1).
For each such choice we choose arbitrary subset of {1, . . . , (h1 − 1)} which
corresponds to the degrees of nonzero terms of h(X). Therefore the number of
all possible nonprincipal ideals is

∑

m>k>j≥0(k−j−1)2j by letting h1 = j. �

Remark. (1) Not all distinct expressions of (g(X), 2Xr) give distinct ideals.
For example, if we take S = Z4[X ]/(X4− 2X2), then one can easily check that
(X3 + 2X2) = (X3, 2X2). Also (X3 + 2, 2X) = (X3 + 2).

(2) Let g(X) = Xk + 2Xh1 + · · · + 2Xht be an xk2 form and k > r > h1.
Then g(X) is not, in general, the smallest element of the ideal (g(X), 2Xr).

3. Number of elements of the ideals

With applications to cyclic codes in mind we specialize our ring S. Ac-
cordingly we let S = Z4[X ]/(X2l − 2X l) throughout this section. Note that
X3l = 2X l ·X l = 0. Hence S is a nilpotent algebra with nilpotency 3l.

For f(X) ∈ S with deg(f(X)) < 2l let us write degL(f(X)) for the degree
of the lowest nonzero degree term.

Let g(X) = Xk + 2h(X) where 2h(X) = 2Xh1 + · · ·+ 2Xht−1 + 2Xht with
ht < · · · < h1 < k < 2l or h(X) = 0. For each basis element {1, X, . . . , X2l−1}
(in this order) of S express X ig(X) as a linear combination of the basis
{X2l−1, . . . , X, 1} (in this order) of S. Then its matrix expression is of the
form

G =

(

A B
C D

)
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where A is a (2l− k)× (2l − k) matrix of the form

A =









0 · · · · · · 1
0 · · · 1 ∗
0 · ∗ ∗
1 ∗ ∗ ∗









with 1’s on the opposite diagonal and ∗’s below the opposite diagonals consists
of the elements of 2Z4. The matrix B consist of 0’s and 2’s of size (2l− k)× k.
And C is a (2l− k)× (2l − k) matrix of the form

C =













0 · · · 2 · · · 2
0 · · · ∗ ∗ 2
2 · · · ∗ · · · 0
∗ · 2 0 0
∗ 2 0 0 0













with 2’s along the opposite diagonal of a square submatrix on the right lower
corner. And D is a k × k matrix of the form

D =





















∗ ∗ · · · 2 0 · · · 0
· · · 2 0 . . . . . . 0

∗ · 0 . . . . . . . . . . 0
2 0 0 . . . . . . . . . . 0
0 0 0 . . . . . . . . . . 0

. . . . . . . . . . . . . . .
0 0 . . . . . . . . . . . . . . . 0





















where ∗’s are in 2Z4; and the upper left corner of D is a square matrix whose
opposite diagonals are 2’s.

We consider two cases. The first case is when D = 0. This is equivalent to
degL(X

2l−kg(X)) ≥ k.
The second case we consider is when D 6= 0. This is equivalent to that

degL(X
2l−kg(X) < k. For D 6= 0, we consider three cases. The first case is

when degL(X
2l−kg(X)) < l (i.e., l + ht < k) in which case the lowest degree

of X2l−kg(X) is 2l − k + ht. The second case is when degL(X
2l−kg(X)) = l

(i.e., l+ht = k) in which case the lowest degree of X2l−kg(X) is 2l− k+ht−1.
Finally we can consider the case when degL(X

2l−kg(X)) > l (i.e., l + ht > k)
in which case the lowest degree of X2l−kg(X) is l.

We will use the notation ⌈a, b⌉ for max{a, b}.

Theorem 3. Let S = Z4[X ]/(X2l − 2X l) and let

g(X) = Xk + 2Xh1 + 2Xh2 + · · ·+ 2Xht

with ht < · · · < h1 < k < 2l. Then the number of elements in the principal

ideal generated by g(X) is given by

(i) if degL(X
2l−kg(X) ≥ k), then the number of elements is 42l−k,
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(ii) if degL(X
2l−kg(X) < k), then the number of elements is











42l−k−ht22k−2l−ht if l+ ht < k

42l−k22k−2l−ht−1 if l+ ht = k

42l−k2⌈k−l,0⌉ if k < ht + l

where ⌈a, b⌉ = max{a, b}.

Remark. It is understood that there is no factor of 2 in the first two numbers
of (ii) when there is no ht or ht−1.

Proof. First consider the case when D = 0, i.e., degL X2l−kg(X) ≥ k. And in
this case, the number of 1’s is 2l− k. And using these 1’s we can get rid of 2’s
in C. Hence the ideal generated by g(X) is free over Z4 of rank 2l− k.

Now assume degLX2l−kg(X) < k. The number of 1’s in the opposite diago-
nal of A is 2l−k. As before we can get rid of 2’s in C without changingD. Now
we need to count the number of 2’s on the opposite diagonal of a square subma-
trix in the upper left corner of D. The first case is when degL(X

2l−kg(X)) < l
(i.e., l + ht < k) in which case the lowest degree of X2l−kg(X) is 2l − k + ht.
Therefore the number of 2’s on the opposite diagonal in a square submatrix of
D is k− (2l−k+ht) = 2k−2l−ht. Thus, in this case, the number of elements
in the ideal generated by g(X) is 42l−k22k−2l−ht .

We omit the proof of the other cases which can be proved in the same
manner. �

Corollary 2. Let S = Z4[X ]/(X2l − 2X l). Then the ideal (g(X)) is Z4-free if

and only if the exponent of 2 is zero in the formula for the number of elements

of the ideal (g(X)). In particular, the ideal (g(X)) is Z4-free only when one of

the following cases holds:










degL(X
2l−kg(X)) ≥ k,

0 < ht = k − l and 2ht = ht−1,

0 < ht = k − l and there is no ht−1.

Proof. We know that the ideal (g(X)) is Z4-free if there is no 2-part which is
the case when degL(X

2l−kg(X)) ≥ k. For the case (ii) in Theorem 3, one can
check easily that the first and third case cannot happen. The only possible
case where the exponent of 2 becomes 0 is the second case of (ii). It happens
exactly when 0 < ht = k − l, 2ht = ht−1; or 0 < ht = k − l and there is no
ht−1. �

Remark. It can be shown [5] that the ideal (g(X)) is free if and only if g(X)
divides X2l − 2X l.

Proposition 6. Let S = Z4[X ]/(X2l− 2X l). Then the number of elements in

the ideal (2Xr) generated by 2Xr is 22l−r.

Proof. Easy to show and we omit its proof. �
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Theorem 4. Let S = Z4[X ]/(X2l − 2X l) and let

g(X) = Xk + 2Xh1 + 2Xh2 + · · ·+ 2Xht

with ht < · · · < h1 < k < 2l. Then the number of elements in the ideal

(g(X), 2Xr) generated by g(X) and 2Xr is given by

(i) if degL(X
2l−kg(X)) ≥ k, then the number of elements is 42l−k2⌈k−r,0⌉,

(ii) if degL(X
2l−kg(X)) < k, then the number of elements is











42l−k2⌈2k−2l−ht,k−r⌉ if l + ht < k

42l−k2⌈2k−2l−ht−1,k−r⌉ if l + ht = k

42l−k2⌈k−l,0⌉ if k < ht + l

where ⌈a, b⌉ = max{a, b}.

Proof. The generator matrix for (g(X), 2Xr)

G =





A B
C D
F





where F is a matrix of the same form as D of size (2l− r)× 2l. Now it is easy
to check that the number of elements in the ideal is given as in the theorem
and we omit the detail. �

4. Annihilating polynomials of the ideals

Recall [1] the annihilator Ann(I) of an ideal I of a ring R is given by

Ann(I) = {r ∈ R | rx = 0 for all x ∈ I}.

We will find polynomials which annihilates the polynomial g(X) in the ‘most
economical’ way which will turn out to be the generators for the dual of the
cyclic codes.

Proposition 7. Let S = Z4[X ]/(X2l−2X l). Then the annihilator of the ideal

(2Xr) is given by (X2l−r, 2).

Proof. By Theorem 2 we need to find the smallest xk2 form and 2xr form which
annihilate 2Xr. Now we have X2l−r(2Xr) = 2X2l = 0 and 2(2Xr) = 0. It is
clear that X2l−r is a minimal xk2 form which annihilates g(X) and 2 is the
smallest 2xr form which annihilates 2Xr. �

Theorem 5. Let S = Z4[X ]/(X2l − 2X l) and let

g(X) = Xk + 2Xh1 + 2Xh2 + · · ·+ 2Xht

with ht < · · · < h1 < k < 2l. Then the annihilator of the ideal (g(X)) is given

by

(i) if degL(X
2l−kg(X)) ≥ k, then Ann(g(X)) is generated by

g⊥(X) = X2l−k +

t
∑

i=1

2Xhi+2l−2k + 2X l−k.
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(ii) if degL(X
2l−kg(X)) < k, then Ann(g(X)) is generated by g⊥(X) and

2X2l−k where g⊥(X) is given by










Xk−ht + 2Xh1−ht + 2Xh2−ht + · · ·+ 2 + 2Xk−ht−l if l + ht < k

Xk−ht−1 + 2Xh1−ht−1 + 2Xh2−ht−1 + · · ·+ 2 if l + ht = k

X l + 2X l−k+h1 + · · ·+ 2X l−k+ht + 2 if l < k < ht + l.

Proof. (i) We need to find the smallest xk2 form Xm + 2h′(X) such that
Xmg(X) = 2h′(X)g(X). Hence we need to find the smallest m such that
Xmg(X) ∈ 2Z4[X ] and degL(X

mg(X)) ≥ k.
Since degL(X

2l−kg(X)) ≥ k we see that hi+2l− k ≥ k and l ≥ k whenever
they appear as an exponent of a nonzero term of X2l−kg(X) =

∑

2Xhi+2l−k+
2X l. And we see that m = 2l − k is the smallest such and

X2l−kg(X) =
∑

2Xhi+2l−k + 2X l

= 2g(X)
∑

Xhi+2l−2k + 2g(X)X l−k.

Therefore we see that g⊥(X) = X2l−k +
∑t

i=1 2X
hi+2l−2k + 2X l−k is the

smallest xk2 form that annihialtes g(X).
The smallest 2xr form that annihilates g(X) is 2X2l−k but it already belongs

to the ideal (g⊥(X)). Therefore Ann(g(X)) = (g⊥(X)).
(ii) Now suppose degL(X

2l−kg(X)) < k. There are three cases we need to
consider.

First consider the case degL(X
2l−kg(X)) < k and (2l − k) + ht < l, i.e.,

l+ ht < k. In this case the degree of the lowest nonzero term of X2l−kg(X) is
2l− k + ht.

Xk−htg(X) = X2k−ht + 2Xk−ht+h1 + · · ·+ 2Xk

= 2Xk−ht+h1 + · · ·+ 2Xk + 2X l ·X2k−2l−ht

= 2X−ht+h1g(X) + · · ·+ 2g(X) + 2Xk−ht−lg(X),

where (k − ht − l) > 0. Therefore

(Xk−ht + 2X−ht+h1 + 2X−ht+h2 + · · ·+ 2 + 2Xk−ht−l)g(X) = 0.

Second consider the case when degL(X
2l−kg(X)) < k and 2l − k + ht = l.

That is l + ht = k and ht−1 < 2k − 2l.

Xk−ht−1g(X)

= X2k−ht−1 + 2Xk−ht−1+h1 + · · ·+ 2Xk + 2Xk−ht−1+ht

= 2Xk−ht−1+h1 + · · ·+ 2Xk + 2Xk−ht−1+ht + 2X l ·X2k−2l−ht−1

= 2X−ht−1+h1g(X) + · · ·+ 2X−ht−1+ht−2g(X) + 2g(X).

Therefore (Xk−ht−1 + 2X−ht−1+h1 + 2X−ht−1+h2 + · · · + 2)g(X) = 0. Hence
g⊥(X) = (Xk−ht−1 + 2X−ht−1+h1 + 2X−ht−1+h2 + · · ·+ 2) ∈ Ann(g(X)).
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Thirdly consider the case when k > degL(X
2l−kg(X)) > l. Hence we have

k < ht + l and

X(2l−k)+(k−l)g(X) = X lg(X)

= X l+k + 2X l+h1 + · · ·+ 2X l+ht

= 2X l−k+h1g(X) + · · ·+ 2X l−k+htg(X) + 2X lXk−l

= 2X l−k+h1g(X) + · · ·+ 2X l−k+htg(X) + 2g(X).

Hence g⊥(X) = X l + 2X l−k+h1 + · · ·+ 2X l−k+ht + 2 ∈ Ann(g(X)).
In any one of these cases we have 2X2l−kg(X) = 0. Hence we see that

2X2l−k ∈ Ann(g(X)).
As in (i) we see that g⊥(X) is the smallest xk2 form and 2X2l−k is the

smallest 2xr form that annihilate g(X) in each cases. Therefore Ann(g(X)) =
(g⊥(X), X2l−k). �

Theorem 6. Let R = Z4[X ]/(X2l − 2X l) and let

g(X) = Xk + 2Xh1 + 2Xh2 + · · ·+ 2Xht

with ht < · · · < h1 < k < 2l. Then the annihialtor of the ideal (g(X), 2Xr) is

given by

(i) if degL(X
2l−kg(X)) ≥ k), then Ann(g(X), 2Xr) is generated by 2X2l−k

and X⌈k−r,0⌉g⊥(X) where g⊥(X) is given in Theorem 5.

(ii) if degL(X
2l−kg(X)) < k), then Ann(g(X), 2Xr) is generated by g⊥1 (X)

and 2X2l−k where g⊥1 (X) is given by










X⌈2l−k+ht−r,0⌉g⊥(X) if l+ ht < k

X⌈2l−k+ht−1−r,0⌉g⊥(X) if l+ ht = k

X⌈l−r,0⌉g⊥(X) if l < k < ht + l

where g⊥(X) is given in Theorem 5 in each respective case.

Proof. (i) As before, we need to find the smallest xk2 form and 2xr form which
annihilate g(X) as well as 2Xr. We saw in Theorem 5 that g⊥(X) is the
smallest xk2 form of degree 2l − k which annihilates g(X). If r ≥ k, then
2Xrg⊥(X) = 0 since all the coefficients of Xrg⊥(X) are in 2Z4. If r < k, then
Xk−rg⊥(X) annihilates g(X) as well as 2Xr. It is obvious that Xk−rg⊥(X)
is the smallest such. Since any 2xr form annihilates 2Xr we need the smallest
2xr form which annihilates g(X) which should be 2X2l−k.

We omit the proof of (ii) which can be proved in the same way. �

5. Nilpotent algebras and cyclic codes over Z4

To apply the results on nilpotent algebras of the previous sections we will

show that the nilpotent algebra S = Z4[X ]/(X2n − 2X2n−1

) is isomorphic to
the ring R = Z4[X ]/(X2n − 1) whose ideals can be considered as the cyclic
codes of length 2n.
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First we need a lemma.

Lemma 2. Let n ≥ 2. Modulo 4 we have the equality
(

2n

r

)

≡

{

0 (mod 4) if r 6= 2n−1,

2 (mod 4) if r = 2n−1.

Proof. We recall
(

2n

r

)

=
2n(2n − 1)(2n − 2) · · · (2n − r + 1)

1 · 2 · · · r
.

By the relation
(

2n

r

)

=

(

2n

2n − r

)

we may assume r ≤ 2n−1.
First let r < 2n−1. Note that for any k ≤ 2n−1 the highest power of 2 diving

k is the same as the highest power of 2 dividing 2n − k. Write r = 2at with
t odd. Let {2, 22, 2, . . . , 2a} be the set of powers of 2 in the set of numbers
{1, 2, 3, . . . , r}. Then since r < 2n−1 we have a ≤ n− 2. Now the power of 2 in

the denominator of
(

2n

r

)

is 2 · · · 2a. On the other hand, the power of 2 in the

numerator of
(

2n

r

)

is 1
2a 2

n · 2 · · · 2a. Therefore the power of 2 in
(

2n

r

)

is 2n/2a

which is divisible by 4 since a ≤ n− 2.

Now let r = 2n−1. Then the power of 2 in the numerator of
(

2n

r

)

is 1
2n−1 2

n ·

2 · 22 · · · 2n−1. On the other hand, the power of 2 in the denominator of
(

2n

r

)

is

2n · 2 · 22 · · · 2n−1. Therefore the power of 2 in
(

2n

r

)

is 2n/2n−1 which is 2. �

Proposition 8. Let n ≥ 1. Let X2n − 1 ∈ Z4[X ]. Then we can write

X2n − 1 = (X − 1)2
n

− 2(X − 1)2
n−1

.

Proof. For n ≥ 2 we have

(X − 1)2
n

= X2n − 2X2n−1

+ 1

by Lemma 2. Therefore, in Z4[X ], we have

X2n − 1 = (X − 1)2
n

− 2X2n−1

− 2

= (X − 1)2
n

− 2(X2n−1

+ 1)

= (X − 1)2
n

− 2(X2n−1

− 2X2n−2

+ 1)

= (X − 1)2
n

− 2(X − 1)2
n−1

.

For n = 1, we check: X2 − 1 = (X − 1)2 − 2(X − 1). �

Corollary 3. There is an isomorphism

φ : Z4[T ]/(T
2n − 2T 2n−1

) −→ Z4[X ]/(X2n − 1)

of rings which maps f(T ) to f(X−1). The inverse of φ maps f(X) to f(X+1).
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Corollary 4. The ring Z4[X ]/(X2n − 1) is a local ring with the maxiaml ideal

(2, X − 1) for all n ≥ 1.

Proof. By Corollary 1, R = Z4[X ]/(X2n − 1) is a local ring. By Proposition 1,

S = Z4[T ]/(T
2n − 2T 2n−1

) is a local ring with the maximal ideal m = (2, T ).
Hence φ(m) = (2, X − 1) is the maximal ideal of the local ring R. �

Note that X2n − 1 = (X− 1)2
n

− 2(X− 1)2
n−1

is a primary polynomial with
the basic irreducible polynomial X − 1 [4].

Combining Proposition 8 with Theorem 2 and by a change of variable we
can find all cyclic codes of length 2n over Z4.

Theorem 7. The cyclic codes of length 2n over Z4 are given by the ideals

(2(X − 1)s) for some s or (g(X − 1), 2(X − 1)r) where g(T ) is a xk2 form of

degree < 2n and some r ≤ deg(g).

Proof. By Corollary 1 to Proposition 8, we have an isomorphism

φ : Z4[T ]/(T
2n − 2T 2n−1

) −→ Z4[X ]/(X2n − 1).

The ideals of Z4[X ]/(X2n − 1) are precisely of the form φ(J) where J is an

ideal of Z4[T ]/(T
2n − 2T 2n−1

). Now the result follows from Theorem 2. �

6. Duality of cyclic codes over Z4

To find the dual of cyclic codes we use the isomorphism

φ : Z4[T ]/(T
2n − 2T 2n−1

) −→ Z4[X ]/(X2n − 1)

which maps f(T ) to f(X − 1).
We will use the following obvious facts.

Lemma 3. Let S = Z4[X ]/(X2n − 2X2n−1

) and R = Z4[X ]/(X2n − 1) and

φ : S → R be the isomorphism defined above.

(i) If J is an ideal of S, then φ(J) is an ideal of R with the same number of

elements.

(ii) If g1(X), g2(X) ∈ S with g1(X)g2(X) = 0, then φ(g1(X))φ(g2(X)) = 0
and conversely.

We need a well known fact.

Lemma 4. Let C be a Z4-submodule of Zn
4 . Define

C⊥ = {b ∈ Z
n
4 | a · b = 0 for all a ∈ C},

where a = (a1, . . . , an), b = (b1, . . . , bn) and a · b = a1b1 + · · · + anbn. Then

the number of elements of C is of the form #C = 4k12k2 and then #C⊥ =
4n−k1−k22k2 .
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For a polynomial f(X) = anX
n + · · · + a1X + a0 be a polynomial over

a commutative ring. As usual we define the reciprocal polynomial f∗(X) as
f∗(X) = Xnf(X−1).

Lemma 5. (i) Let g(T ) = T k +2h(T ) be a xk2 form and r(T ) = 2T r be a 2xr

form. Then g∗∗(X − 1) = g(X − 1) and r∗∗(X − 1) = r(X − 1).
(ii) Let g, h be the generator polynomials for a cyclic code C and if g′ and

h′ are polynomilas with nonzero polynomilas with nonzero constant terms an-

nihilating the ideal (g, h). If (g′, h′) has the same number of elements as C⊥

which is given in Lemma 4, then C⊥ is generated by g′ and h′.

Proof. For (i) it is enough to show that the constant terms of g(X − 1) and
r(X−1) is nonzero. Since g(X−1) = (X−1)k+2(X−1)h1+· · ·+2(X−1)ht, the
constant term of g(X−1) is a unit. And the constant term of r(X) = 2(X−1)r

is 2. Hence in either case we see that the constant terms of g(X−1) and r(X−1)
are nonzero.

(ii) For this we simply note that (g′)∗∗ = g′ and (h′)∗∗ = h′ since g′ and h′

have nonzero constants. �

For the sake of notational convenience let us write 2l = 2n and l = 2n−1.

Proposition 9. Let S = Z4[X ]/(X2n − 1) and let T = X − 1 and l = 2n−1.

Let C be the cyclic code generated by 2T r. Then the dual C⊥ is given by the

ideal (T 2l−r, 2) generated by T 2l−r and 2.

Proof. By Lemma 3 and by the results of the previous sections we see that
the polynomials g⊥(T ) and 2T 2l−k annihilate g(T ). Hence g⊥(T ) and 2T 2l−k

annihilate g(T ). By Lemma 5 we need to show that the ideals generated by
g⊥(T ) and 2T 2l−k have the right number of elements. By Lemma 3 we can use
Theorem 4 to count the number of elements in the ideal (T 2l−r, 2) which gives
4r22l−r. Now that is the right number of elements for the dual. As desired. �

Theorem 8. Let R = Z4[X ]/(X2n − 1). Let T = X − 1 and

g(T ) = T k + 2T h1 + 2T h2 + · · ·+ 2T ht

with ht < · · · < h1 < k < 2l, l = 2n−1. Let C be the cyclic code generated by

g(T ) then the dual C⊥ is generated by;
(i) if degL(T

2l−kg(T )) ≥ k, then C⊥ is generated by

g⊥(T ) = T 2l−k +

t
∑

i=1

2T hi+2l−2k + 2T l−k,

(ii) if degL(T
2l−kg(T )) < k), then C⊥ is generated by g⊥(T ) and 2T 2l−k

where g⊥(T ) is given by










T k−ht + 2T h1−ht + 2T h2−ht + · · ·+ 2 + 2T k−ht−l if l + ht < k

T k−ht−1 + 2T h1−ht−1 + 2T h2−ht−1 + · · ·+ 2 if l + ht = k

T l + 2T l−k+h1 + · · ·+ 2T l−k+ht + 2 if l < k < ht + l.
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Proof. By the results of §4, we see that the polynomials g⊥(X) and 2X2l−k

annihilate g(X). Hence g⊥(T ) and 2T 2l−k annihilate g(T ) by Lemma 3. By
Lemma 4 we need to show that the ideals generated by g⊥(T ) and 2T 2l−k have
the right number of elements. By Lemma 3, the number of elements in the
ideal (g⊥(T ), 2T 2l−k) is the same as (g⊥(X), 2X2l−k). Now we compute the
number of elements in each case by using Theorem 4.

(i) Since Xkg⊥(X) = X2l +
∑

2Xhi+2l−2k + 2X l =
∑

2Xhi+2l−2k we see
that degL(X

kg⊥(X)) ≥ 2l − k. Therefore we can apply (i) of Theorem 3 to
see that the number of element of (g⊥(X)) is 42l−(2l−k) = 4k. By Lemma 5 we
have that C⊥ = (g⊥(T )).

(ii) Consider the first case of (ii). Since k − ht − l > 0 the lowest degree
of g⊥(X) = Xk−ht + 2X−ht+h1 + 2X−ht+h2 + · · · + 2 + 2Xk−ht−l is 0, i.e.,
degL(g

⊥(X)) = 0. Since deg(g⊥(X)) = k − ht we have that l degL(g
⊥) <

deg(g⊥). Hence we can apply the first case of Theorem 3(ii) to see that the
number of elements of (g⊥(X)) is 4(2l−k)+ht22k−2l−2ht . On the other hand, by
writing out the generator matrix for (g⊥(X), 2X2l−k) we see that the number of
elements of (g⊥(X), 2X2l−k) is 4(2l−k)+ht22k−2l−2ht2ht = 4(2l−k)+ht22k−2l−ht .
Now we see that this is the right number of elements for C⊥. Hence C⊥ =
(g⊥(T ), 2T 2l−k).

The second case is similar to the case considered above and we omit its
proof.

Now consider the third case. By Theorem 3, we see that the number
of elements of (g⊥(T )) is 4l. Now by writing out the generator matrix for
(g⊥(T ), 2T 2l−k) we see that the number of elements of (g⊥(T ), 2T 2l−k) is
4l2k−l. Now it is immediate to show that it is the right number of elements for
C⊥. Hence C⊥ = (g⊥(T ), 2T 2l−k). �

Theorem 9. Let R = Z4[X ]/(X2n − 1) and let T = X − 1. Let

g(T ) = T k + 2T h1 + 2T h2 + · · ·+ 2T ht

with ht < · · · < h1 < k < 2l and l = 2n−1. Let C be the cyclic code (g(T ), 2T r)
generated by g(T ) and 2T r then the dual C⊥ is generated by;

(i) if degL(T
2l−kg(T )) ≥ k), then C⊥ is given by

C⊥ = (T ⌈k−r,0⌉g⊥(T ), 2T 2l−k),

(ii) if degL(T
2l−kg(T )) < k), then C⊥ is given by

C⊥ =











(T ⌈2l−k+ht−r,0⌉g⊥(T ), 2T 2l−k) if l + ht < k

(T ⌈2l−k+ht−1−r,0⌉g⊥(T ), 2T 2l−k) if l + ht = k

(T ⌈l−r,0⌉g⊥(T ), 2T 2l−k) if l < k < ht + l

where g⊥(T ) is given in Theorem 5 in each respective case.

Proof. We need to check that C⊥ has the right number of elements by using
Theorem 4.
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(i) It is easy to show that (T k−rg⊥(T ), 2T 2l−k) annihilate g(T ) and 2T r.
Hence it suffices to show that (T k−rg⊥(T ), 2T 2l−k) has the right number of
elements. By Theorem 4, we see (T k−rg⊥(T ), 2T 2l−k) has 4r2k−r elements.
On the other hand, the number of elements of (g(T ), 2T r) is 42l−k2k−r as
expected.

(ii) Consider the first case when l + ht < k. If 2l − k + ht < r, then
g⊥(T ) · 2T r = 0. Hence g⊥(T ) and 2T 2l−k annihilates g(T ) and 2T r. To
see (g(T ), 2T r)⊥ = (g⊥(T ), 2T 2l−k) we need to show that (g(T ), 2T r) and
(g⊥(T ), 2T 2l−k) have the right number of elements. Now the number of el-
ements of (g(T ), 2T r) is seen to be 42l−k22k−2l−ht . On the other hand, the
number of elements of (g⊥(T ), 2T 2l−k) is 42l−k+ht22k−2l−ht which shows that
(g(T ), 2T r)⊥ = (g⊥(T ), 2T 2l−k). If 2l − k + ht ≥ r, then we have that
T 2l−k+ht−r g⊥(T ) · 2T r = 0. Therefore T 2l−k+ht−rg⊥(T ) and 2T 2l−k an-
nihilate (g(T ), 2T r). To see (g(T ), 2T r)⊥ = (T 2l−k+ht−rg⊥(T ), 2T 2l−k) we
need to check they have the right number of elements. In fact, the num-
ber of elements of (g(T ), 2T r) is 42l−k2k−r and the number of elements of
(T 2l−k+ht−rg⊥(T ), 2T 2l−k) is 4r2k−r as desired.

We omit the proof of the second case.
For the third case, if r ≥ l, then 2T r · g⊥(T ) = 0. Hence g⊥(T ) and 2T 2l−k

annihilates (g(T ), 2T r). We claim that (g(T ), 2T r)⊥ = (g⊥(T ), 2T 2l−k). For
this one checks that the number of elements of (g(T ), 2T r) is 42l−k2k−l and the
number of elements of (g⊥(T ), 2T 2l−k) is 4l2k−l as desired. On the other hand,
if r < l, then T l−rg⊥(T ) and 2T 2l−k annihilate (g(T ), 2T r). To see in fact
(g(T ), 2T r)⊥ = (T l−rg⊥(T ), 2T 2l−k) we count the number of elements in each
ideal. The number of elements of (g(T ), 2T r) is 42l−k2k−r and the number of
elements of (T l−rg⊥(T ), 2T 2l−k) is 4r2k−r as contented. �

7. Examples

Example 1. A nilpotent Z4 algebra with nilpotency 3.

Let S = Z4[X ]/(X2 − 2X). It can be shown by direct computation or by
using Propositions 4 and 5 that there are exactly 5 distinct proper ideals

(2), (X), (2X), (X + 2), (2, X).

In particular, the maximal ideal is the only one which is not principal.
The number of elements in the ideals and the duality among these ideals are

given as follows.

#(X + 2) = 4, (X + 2)⊥ = (X), #(X) = 4;

#(2X) = 2, (2X)⊥ = (X, 2), #(X, 2) = 4 · 2;

#(2) = 22, (2)⊥ = (2).

Example 2. A nilpotent Z4 algebra with nilpotency 6.
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Let S = Z4[X ]/(X4− 2X2). Consider the possible choice for xr2 form g(X)
in terms of degree.

If deg g = 1, then there are two possible xr2 form are {X,X + 2}. For
g(X) = X the only possible 2xr form to adjoin is 2 to form the maximal ideal
(X, 2).

If deg g = 2, then the possible xk2 forms are

{X2, X2 + 2, X2 + 2X,X2 + 2X + 2}.

The possible 2xr forms we can adjoin to X2 are {2X, 2}; and we can adjoin 2X
to X2 + 2.

If deg g = 3, then the possible xk2 forms are

{X3, X3+2, X3+2X+2, X3+2X2+2, X3+2X2+2X,X3+2X2+2X+2}.

The possible 2xr forms we can adjoin to X3 are {2X2, 2X, 2}; the possible 2xr
form we can adjoin to X3 + 2X + 2 is {2X2}; the possible 2xr form we can
adjoin to X3 + 2 are {2X2, 2X}.

Let g(X) = X3 + 2X + 2. Then l + ht = 2 + 0 < k = 3. Hence the number
of elements of (g(X)) is 4 · 22. And g⊥(X) = X3 + 2 with #(g⊥(X)) = 4 · 22.

Consider I = (g(X), 2X2) with g(X) = X3 + 2X . Then #I = 4 · 2.
Ann(g(X)) = X3 + 2X + 2 and Ann(g(X), 2X2) = (X3 + 2X + 2, 2X) =
(X3 + 2, 2X).

Example 3. A cyclic code of length 8 over Z4.

Let C be the cyclic code generated by g(T ) = T 5+2T 2+2T and r(T ) = 2T 4.
Then by Theorem 3, we see that the number of elements of C is 43 · 2. By
Theorem 6(i), we see that the dual C⊥ of C is generated by T 4 + 2T and 2T 3.
By Theorem 3, the number of elements of C⊥ is 44 · 2.
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