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RESULTANTS OF CYCLOTOMIC POLYNOMIALS OVER

Fq[T ] AND APPLICATIONS

Sangtae Jeong

Abstract. In this paper we compute the resultants of the Carlitz cyclo-
tomic polynomials and then we address two applications to the setting of
the Carlitz module.

1. Introduction

The cyclotomic polynomials play a fundamental role in building on the cy-
clotomic theory. The resultant of any two cyclotomic polynomials was first
calculated by E. Lehmer [10] and later by F. Diederichsen [6] and T. M. Apos-
tol [1] independently. In particular, Apostol used the decomposition of reduced
residue systems to explicitly calculate the resultants of two cyclotomic polyno-
mials. Since Apostol’s proof, L. Carlitz [5] used an auxiliary function associated
with the roots of the cyclotomic polynomials to provide a slight generalization
of Apostol’s result. Besides this, S. Louboutin [11] gave another proof based
on the fact that any rational number which is an algebraic integer is a rational
integer. H. Lüneburg [12] also gave an independent proof to reprove a well
known fact that the ring of algebraic integers in the cyclotomic field Q(ζm) is
Z[ζm], where ζm is a primitive m-th root of unity.

By the well-known analogies between number fields and function fields, there
are the Carlitz cyclotomic polynomials analogous to the classical cyclotomic
polynomials. Bae [3] first calculated the resultants of Carlitz cyclotomic poly-
nomials by adapting the proofs of Apostol [1, 2]. In this paper we give another
proof of Bae’s results by using the idea of Louboutin [11]. As consequences,
we first show that the resultant for any two polynomials ρm, ρn arising from
the Carlitz module ρ has a close relation with their p-resultant, which was first
developed by Ore [13]. From this relation we deduce that the p-resultant of ρm,
ρn lies in the underlying finite field. Secondly, as is modeled on the arguments
of H. Lüneburg, we establish that the integral closure of A = Fq[T ] in the
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cyclotomic function field K(λm) is A[λm], where λm is a primitive m-division
point associated to the Carlitz module. Finally, we provide the function field
analogue of Carlitz’s result [5], which is a slight generalization of Bae’s results.

2. Preliminaries

2.1. Carlitz module

Let us briefly recall the relevant portions of the Carlitz module. Let Fq be
a finite field with q elements. Let A = Fq[T ], A

+ = {monic ∈ A}, K = Fq(T ),
K∞ = Fq((1/T )) and C be the completion of an algebraic closure of K∞. Let
C{τ} be the non-commutative polynomial ring in τ over C with commuta-
tion rule τc = cqτ(c ∈ C), identified with the ring of Fq-linear polynomials

{
∑

i aix
qi} through

∑

i aiτ
i 7→

∑

i aix
qi . Let ρ : A → C{τ}, a 7→ ρa be the

Carlitz module determined by ρT = Tτ0 + τ and ρα = ατ0 for α ∈ Fq. For
m ∈ A+, let Λm be the module of m-division points, that is, the roots in C of
ρm(x) = 0 and λm be a fixed primitive root of Λm. By the analytic theory the
Carlitz module ρ : A→ C{τ} is equivalent to defining

(1) ρa(eL(z)) = eL(az),

where eL(z) is the Carlitz exponential defined by eL(z) := z
∏

06=λ∈π̄A(1−z/λ)

for an A-lattice L = π̄A and π̄ the period of ρ. We refer the reader to [7] for
details on the Carlitz module.

By Eq.(1) we see that the m-th cyclotomic polynomial Φm(x) is given by

(2) Φm(x) =
∏

a

′(x− eL(
π̄a

m
)) =

∏

a

′(x− ρa(λm)),

where the ′ indicates that a runs over non-zero polynomials in A of degree less
than deg(m), which are relatively prime to m. As is in the classical case, it is
easily seen that Φm is a polynomial with coefficients in A.

2.2. Euler’s totient and Möbius function on A

We give analogues of Euler’s totient and the Möbius function for A. To begin
with, let m be a non-zero polynomial in A. We define |m| to be the cardinality
of the quotient ring A/mA, that is, |m| = qdeg(m). We also define φ(m) to be
the number of a multiplicative group (A/mA)∗, whose representatives consist
of non-zero polynomials in A of degree less than deg(m), which are relatively
prime to m. We denote by Sm the set of such representatives of (A/mA)∗.
Thus, Sm can be a summand of the product in Eq.(2). For a monic m ∈ A+

the Möbius function µ on A is defined by

µ(m) =















1 if m = 1,
(−1)r if m is square-free and r is the number of

monic prime factors of m,
0 if m is not square-free.
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Notational convention. Throughout the paper, any element a in A means
a monic element in A+, unless otherwise specified, and the greatest common
divisor (a, b) means the monic generator of the ideal generated by a and b in A.
Also [a, b] stands for the monic least common multiple of a and b.Whenever we
use the notations

∑

d|m,
∏

d|m and
∏

m=dd′ , d runs through the monic divisors

d ∈ A+ of m.
We now have the crucial properties for φ and µ on A, parallel to classical

results.

Proposition 2.1. (i) φ(P e) = |P |e−1(|P |− 1) for a (monic) prime P ∈ A and

e ≥ 1.
(ii) φ(mn) = φ(m)φ(n) if (m,n) = 1.
(iii) If m is a polynomial in A, then |m| =

∑

d|m φ(d).

(iv) For a monic m ∈ A, ρm =
∏

d|mΦd.

(v) For m ∈ A,
∑

d|m µ(d) = 1 if m is a non-zero constant, = 0 otherwise.

(vi) (Möbius inversion formula) Let f, g be functions from A into a field.

For any non-zero m ∈ A, we have

f(m) =
∑

d|m

g(d) if and only if g(m) =
∑

d|m

µ(m/d)f(d).

Proof. See [14] and [15]. �

Next we have the following recursion formulas for cyclotomic polynomials
over A.

Proposition 2.2. Let P be a monic prime in A and r and M be arbitrary

monics in A. Then
(i) ΦP eM (x) = ΦPM (ρP e−1(x)).

(ii) ΦP eM (x) =

{

ΦM (ρP e(x))/ΦM (ρP e−1(x)) if P ∤M,
ΦM (ρP e(x)) otherwise.

(iii) ΦrM (x) =
∏

r=stΦM (ρs(x))
µ(t) if (r,M) = 1.

Proof. See [4]. But we here sketch a proof. For parts (i) and (ii), use Propo-
sition 2.1(iv) or check that both sides have the same zeros and degrees. Part
(iii) follows from induction on the number of prime factors of r, together with
part (ii). �

2.3. The resultant

We recall some of the interesting properties of resultants. Let D be a com-
mutative ring with unity and f(x), g(x) be two polynomials with coefficients
in D, say

f(x) =
r

∑

i=0

aix
i with ar 6= 0 and g(x) =

s
∑

i=0

bix
i with bs 6= 0.

Then, the resultant R(f, g) of f and g is defined by the determinant of a matrix
M(f, g) where M(f, g) is the r + s square matrix whose entries are arranged
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in the usual fashion. We observe that R(f, g) is a polynomial in ai and bj and
that if f and g have coefficients in A, then R(f, g) is also a polynomial in A.
Hence R(Φm,Φn) belongs to A for two cyclotomic polynomials over A.

Now we state the properties of resultants that are needed later.

Proposition 2.3. (i) If f(x) = ar
∏r
i=1(x − αi) and g(x) = bs

∏s
j=1(x − βj),

then R(f, g) = asrb
r
s

∏

i

∏

j(αi − βj).

(ii) (Multiplicative property) R(f, gh) = R(f, g)R(f, h).
(iii) (Symmetric property) R(f, g) = (−1)rsR(g, h).
(iv) (Factorization property) R(f, g)= (−1)rsbrs

∏s
j=1 f(βj)= asr

∏r
i=1 g(αi).

Proof. See [9]. �

By (i) in Proposition 2.3 we note that two polynomials f and g have a root
in common if and only if R(f, g) = 0. In particular, for all monics m,n ∈ A,
we have

R(Φm,Φn) = 0 if and only if m = n.

3. Resultants of Carlitz cyclotomic polynomials

For m ∈ A+, let λm be a primitive root (or a generator) of Λm, the module
of m-division points and Km = K(λm) be the cyclotomic function field and
Om be the integral closure of A in Km. We say that two elements α and β in
Om, are an associate when there exists a unit ε in Om such that α = εβ. As in
classical case [11], it is well known that two monic polynomials in A which are
equal up to a unit in Om, are identically the same. We use this fact to explicitly
calculate the resultant of two Carlitz cyclotomic polynomials. To begin with,
we see from Proposition 2.3(i) that the resultant R(Φm,Φn) is rewritten as

(3)

R(Φm,Φn) =
∏

a

′
∏

b

′ρmb−na(λmn)

=
∏

a

′
∏

b

′ρ(mb−na)/(mn,mb−na)(λmn/(mn,mb−na)),

where a (b resp.) runs over elements in Sm (Sn resp.).
We will first show that R(Φm,Φn) in Eq.(3) is monic in A and then that the

right side of Eq.(3) equals a monic in A+ up to a unit in Om. Hence, by the
aforementioned fact we will derive the formula for the resultant of two Carlitz
cyclotomic polynomials in Theorem 3.6.

We see that the constant terms of cyclotomic polynomials Φm are explicitly
given as follows.

Lemma 3.1. For a monic m ∈ A+ we have

Φm(0) =







0 if m = 1,
P if m = P e where P is a monic prime and e ≥ 1,
1 otherwise.
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Proof. From Proposition 2.1(iv) we have ρm(x)/x =
∏

16=d|mΦd(x) for a monic

1 6= m ∈ A. Since m =
∏

16=d|mΦd(0), we see easily that Φm(0) = P if m is

a power of some monic prime P in A, and that Φm(0) = 1 otherwise. The
remaining case of m = 1 is very straightforward. �

We now state the A-analogue of the decomposition of reduced residue sys-
tems in Z.

Lemma 3.2. Let m, d be (monic) polynomials in A such that (m, d) = δ for

some δ 6= 0. If a runs through a reduced residue system modulo m, then ad/δ
runs through a reduced residue system modulo m/δ with each residue appearing

exactly φ(m)/φ(m/δ).

Proof. The proof goes on in the same way as [1]. �

We have the A-analogue of [1, Theorem 2], which shows that R(Φm,Φn) in
Eq.(3) is monic in A.

Theorem 3.3. If m and n are distinct monics in A such that deg(m) ≥
deg(n) > 0, we have

R(Φm,Φn) =
∏

d,P

Pµ(n/d)φ(m)/φ(Pa),

where d runs through those monic divisors of n, and P through those monic

primes such that m/(m, d) = P a for some a ≥ 1, µ, φ are analogues of the

Mobius function and the Euler totient for A, respectively.

Proof. By the relation (iv) in Proposition 2.1 and the multiplicative property
(ii) in Proposition 2.3 we obtain R(Φm, ρn) =

∏

d|nR(Φm,Φd).

Since each factor in the preceding product is non-zero the Möbius inversion
formula gives

(4) R(Φm,Φn) =
∏

d|n

R(Φm, ρd)
µ(n/d).

By the symmetric property (iii) we have R(Φm, ρd) = R(ρd,Φm) because φ(m)
is even for odd prime characteristics. By the factorization property (iv) and
Eqs.(2) and (1) we obtain

R(ρd,Φm) =
∏

a

′ρd(eL(π̄a/m) =
∏

a

′eL(π̄ad/m),

where a runs over the elements in Sm. To rewrite the last product, we take a

monic polynomial δ ∈ A such that δ = (m, d). Then we have ad
m = ad/δ

m/δ .

By Lemma 3.2, we deduce

R(ρd,Φm) =
∏

b

′eL(π̄b/m/δ)
φ(m)/φ(m/δ),
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where b runs over the elements in Sm/δ. Hence we have

R(ρd,Φm) = Φm/δ(0)
φ(m)/φ(m/δ).

By Lemma 3.1 we now find

R(ρd,Φm) =

{

Pφ(m)/φ(m/δ) if m/δ is a power of a monic prime P in A,
1 otherwise.

Substituting this into Eq.(4) gives the result. �

Lemma 3.4. Let λm be a generator of Λm and a ∈ A be an element with

(a,m) = 1. Then ρa(λm)/λm is a unit in Om. Moveover, ρa(λm) is a unit

unless m is a power of a prime P in A, in which case ρa(λm)φ(m) is associated

to P in Om.

Proof. The first assertion follows from [14, Proposition 12.6] and the second

from Φm(0) =
∏

′

a ρa(λm) and Lemma 3.1. �

We now employ Lemma 3.4 to determine under what conditions on m and
n in A+ there may exist a and b in Eq.(3) such that mn/(mn,mb − na) is a
power of some monic prime in A. Then we need to count the a’s and b’s in
Eq.(3) for which mn/(mn,mb− na) is a power of some prime in A.

To this end, we need the A-analogue of [11, Lemma 2].

Lemma 3.5. Let m and n be distinct monics in A such that deg(m) ≥
deg(n) > 0, and let a ∈ Sm and b ∈ Sn. Then, mn/(mn,mb − na) is a power

of some monic prime P ∈ A if and only if there exists an integer r ≥ 1 such

that m = nP r and N divides P rb − a, where N is defined by n = P sN with

(P,N) = 1. In that case, mn/(mn,mb − na) = P r+s and there are exactly

φ(m)φ(n)/φ(N) pairs (a, b) ∈ Sm × Sn such that N divides P rb− a.

Proof. The proof of [11, Lemma 2] goes on in the same way. �

We are now in a position to state and prove the formulae for the resultants
of two Carlitz cyclotomic polynomials. This result can already be found in [3,
Proposition 2.5] with different arguments.

Theorem 3.6. (1) If m and n are distinct monics in A such that deg(m) ≥
deg(n) > 0, then we have

R(Φm,Φn) =

{

Pφ(n) if m/n is a power of a monic prime P in A,
1 otherwise,

where φ(n) is the analogue in A for the Euler’s totient.

(2) Let m be a monic in A with deg(m) > 0. Then

R(Φ1,Φm) =

{

P if m is a power of a monic prime P in A,
1 otherwise.
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Proof. Suppose that m = nP r for some monic prime P and r ≥ 1. Then, by
Lemmas 3.4 and 3.5 we see that there are exactly φ(m)φ(n)/φ(N) terms in
Eq.(3) which are not associated to 1, each of which is associated to λP r+s , so
that their product is associated to P e with e = φ(m)φ(n)/φ(N)φ(P r+s) =
Pφ(n). Thus, R(Φm,Φn) = Pφ(n) because R(Φm,Φn) is associated to Pφ(n).
Unless m = nP r for some monic prime P and r ≥ 1, then Lemmas 3.4 and 3.5
imply R(Φm,Φn) is a unit, so that R(Φm,Φn) = 1. Finally, the second assertion
follows immediately from Lemma 3.1 by checking R(Φ1,Φm) = Φm(0). �

We deduce two corollaries from Theorem 3.6.
For a polynomial f ∈ A[x] and a prime P in A, we denote by f̄ ∈ A/P [x]

the polynomial obtained by reducing the coefficients of f modulo P .

Corollary 3.7. If m and n are distinct monics in A such that deg(m) ≥
deg(n) > 0, and (m,n) = 1, then (Φm(a),Φn(a)) = 1 for any a ∈ A.

Proof. Suppose there exists a prime P ∈ A such that P divides both Φm(a)
and Φn(a) for some a ∈ A. Then the two reduced functions Φm, Φn have a root
ā ∈ A/P in common. Hence R(Φm,Φn) = 0. Since R(Φm,Φn) ≡ R(Φm,Φn)
(mod P ) we have R(Φm,Φn) ≡ 0 (mod P ), which contradicts Theorem 3.6.

�

Corollary 3.8. If m and n are distinct monics in A such that deg(m) ≥
deg(n) > 0, and (m,n) = 1, then R(ρm(x)/x, ρn(x)/x) = 1.

Proof. Using (iv) in Proposition 2.1 and the multiplicative property in Propo-
sition 2.3, we have

R(ρm(x)/x, ρn(x)/x) = R(
∏

d|m,d 6=1

Φd,
∏

l|n,l 6=1

Φl) =
∏

d|m,d 6=1

∏

l|n,l 6=1

R(Φd,Φl) = 1,

where the last equality follows from Theorem 3.6. �

4. Two applications

4.1. The p-resultant

We now want to apply the result in Corollary 3.8 to the p-resultant of Fq-
linear polynomials, which is first defined by O. Ore [13]. Let f(τ), g(τ) be
polynomials in C{τ} and {ω1, . . . , ωr} be a basis for the Fq-vector space of
the roots of f(x) and let {θ1, . . . , θs} be the same for g(x). The p-resultant,
Rp(f(τ), g(τ)) of f(τ) and g(τ) is then defined by

Rp(f(τ), g(τ)) =
∆(ω1, . . . , ωr, θ1, . . . , θs)

∆(ω1, . . . , ωr)∆(θ1, . . . , θs)
,

where ∆(x1, . . . , xl) is the Moore determinant as defined in [7]. It is well known
in [7] that ∆(x1, . . . , xl) 6= 0 if and only if x1, . . . , xl are linearly independent
over Fq. We recall Ore’s results on p-resultants.

Proposition 4.1. (i) Rp(f(τ), g(τ))
q−1 = R(f(x)/x, g(x)/x).
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(ii) Rp(f(τ), g(τ)) =
∆(f(θ1),...,f(θs))

∆(θ1,...,θs)
= (−1)rs∆(g(ω1),...,g(ωr))

∆(ω1,...,ωr)
.

Proof. See [7] or [13]. �

Theorem 4.2. If m and n are distinct monics in A such that deg(m) ≥
deg(n) > 0, and (m,n) = 1, then Rp(ρm(τ), ρn(τ)) belongs to Fq

∗.

Proof. The formula (i) in Proposition 4.1 applied to ρm and ρn gives

Rp(ρm(τ), ρn(τ))
q−1 = R(ρm(x)/x, ρn(x)/x).

By Corollary 3.8 we have

Rp(ρm(τ), ρn(τ))
q−1 = 1.

Hence the result follows. �

Proposition 4.3. Let {ω1, . . . , ωr} and {θ1, . . . , θs} be a basis for the Fq-vector
space of the roots of ρm and ρn respectively. If m and n are distinct monics in

A such that deg(m) ≥ deg(n) > 0, and (m,n) = 1, then {ρm(θ1), . . . , ρm(θs)}
and {ρn(ω1), . . . , ρn(ωr)} are a basis for the Fq-vector space of the roots of ρn
and ρm, respectively.

Proof. It follows from Proposition 4.1 and Theorem 4.2. �

4.2. Integral closure of A in Km

It is well known in the cyclotomic theory that the ring of algebraic integers in
the cyclotomic field Q(ζm) is Z[ζm], where ζm is a primitive m-th root of unity.
H. Lüneburg [12] applied the resultants of cyclotomic polynomials to reprove
this fact. Motivated by his work, it is of interest to establish its function field
analogue.

Lemma 4.4. Let m and n be monics in A such that m = nP e for some monic

prime P in A and e ≥ 1 and let λ be a root of Φm.

(i) If P ∤ n and if g ∈ A[x] is such that Φm = Φ
φ(P e)
n + Pg, then g(λ) is a

unit in A[λ].

(ii) If P | n and if g ∈ A[x] is such that Φm = Φ
|P e|
n + Pg, then g(λ) is a

unit in A[λ].

Proof. Set ψ(P e) = φ(P e) if P ∤ n, ψ(P e) = |P e| otherwise. Then we have
φ(m) = φ(n)ψ(P e). By Theorem 3.6, (ii) and (iv) in Proposition 2.3 we get

Pφ(m) = Pφ(n)ψ(P
e) = R(Φm,Φ

ψ(P e)
n ) =

∏

Φm(ζ)=0

Φn(ζ)
ψ(P e).

Now since 0 = Φn(ζ)
ψ(P e) + Pg(ζ), the preceding equation gives

Pφ(m) = Pφ(m)
∏

Φm(ζ)=0

g(ζ),

so that g(λ) is indeed a unit. �
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The following lemma is the A-analogue of Lemma 1.2 in [12].

Lemma 4.5. Let F be a finite extension of K = Fq(T ) and θ ∈ F be an integral

element over A with F = K(θ). Let f be the minimal polynomial for θ over K
and let P be a prime in A and P be a maximal ideal of R = A[θ] with P ∈ P .
Let η ∈ A[x] be a monic polynomial of minimal degree for which η(θ) ∈ P is

such that f = ηh+ Pg for some polynomials g, h ∈ A[x]. If (η̄, ḡ, h̄) = 1 over a

field A/P , the localization of R at P is a discrete valuation ring.

Proposition 4.6. Let m be a monic in A and λ be a generator of Λm. Then
A[λ] is a Dedekind domain.

Proof. Let P be a monic prime in A, and P be the maximal ideal of A[λ] with
P ∈ P . Since Φm is the minimal polynomial of λ over A, then Φm divides
ρm. The derivative of ρm is m, so that Φm over A/P is square-free if m is not
divisible by P. For the primes P with |P | = 2, if m = PQ for a monic Q with
(Q,P ) = 1, then by Proposition 2.2(ii) we see that Φm(x) ≡ ΦQ(x) (mod P ).
Hence for these cases, we see by Lemma 4.5 that the localization L of R = A[λ]
at P is a discrete valuation ring. To deal with the remaining cases, let us write
m = P en, with n ∈ A a monic such that (P, n) = 1, where e is an integer
≥ 2 if |P | = 2, and an integer ≥ 1 otherwise. Then we have φ(P e) ≥ 2. By
Proposition 2.2(ii) we deduce for some g ∈ A[x],

Φm = Φφ(P
e)

n + Pg.

By Lemma 4.4 we see that g(λ) is a unit in R. Putting ε = −g(λ)−1 into
the preceding equation gives

P = Φn(λ)
φ(P e)ε.

Let η be the minimal polynomial of λ + P over (A + PR)/P ≃ A/P. Then η
over A/P is a divisor of Φm, and hence of Φn. So there exist H,G ∈ A[x] with
Φn = ηH + PG. Then we have

P = (η(λ)H(λ) + PG(λ))φ(P
e)ε.

Thus, we have α1, β1 ∈ R with P = η(λ)α1+P
φ(P e)β1. By induction it follows

that

P = η(λ)αi + Pφ(P
e)iβi

with αi, βi ∈ R for all i ∈ N. Let Q be the maximal ideal in the localized ring L
of R at P. Then the only prime ideals of L are 0 and Q. It follows that Q/η(λ)L
is a prime ideal in L/η(λ)L. By Krull’s theorem (see [8, Theorem 25. S 16]),
Q/η(λ)L is the nilradical of L/η(λ)L. Therefore PN ∈ η(λ)L for some positive
integer N. Since φ(P e) ≥ 2, there exists i such that φ(P e)i ≥ N. Then

P = η(λ)αi + Pφ(P
e)iβi ∈ η(λ)L

and it follows that Q = PL+ η(λ)L = η(λ)L. As in the proof of Lemma 1.2 in
[12], this implies that L is a discrete valuation ring. Since the localization of R
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at every maximal ideal is a discrete valuation ring and R is Noetherian, R is a
Dedekind domain. �

Theorem 4.7. Let Km = K(λm) be the cyclotomic function field and Om be

the integral closure of A in K(λm). Then Om = A[λm].

Proof. Since a Dedekind domain is integrally closed, the result follows imme-
diately from Proposition 4.6. �

We refer the reader to [14, Proposition 12.9] or [15, Theorem 12.5.10] for an
alternate proof, which uses standard facts about Dedekind domains.

5. Generalization

We retain all notations from the previous sections, especially from Introduc-
tion and Section 2.

In this section we provide a slight generalization of the formulas for R(Φm,
Φn) in Theorem 3.6. We begin by defining an auxiliary function defined by, for
monics m,n ∈ A+

(5) Hm,n(x) =
∏

α,β

(x − (α− β)),

where α (β resp.) runs through the generators of Λm (Λn resp.).
By Proposition 2.3(i) we see that for mn 6= 1,

Hm,n(0) = R(Φm,Φn).

Now we shall define an element k ∈ A+, denoted k = (m,n)∗, given by the
greatest common divisor k ∈ A+ of m and n in A+ such that

(6) (k,m/k) = 1, (k, n/k) = 1.

As a simplest example, we shall have that for k = 1,

Hm,n(x) = ΦM (x)φ(δ),

where M = [m,n], δ = (m,n) in Theorem 5.6.
We need to go through several lemmas to prove our main Theorem 5.6.

Lemma 5.1. The number of solutions (x, y) ∈ SP e × SP e of

x− y ≡ a (mod P e) (a ∈ A,P ∤ xy)

where P is a prime in A and e > 1 is equal to
{

|P |e−1(|P | − 2) if P ∤ a,
|P |e−1(|P | − 1) if P | a.

Proof. It follows from the fact that the kernel of the natural map for (A/P e)∗

→ (A/P )∗ is a group of order |P |e−1. See [14, Proposition 1.6] for a proof of
this fact. �
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Lemma 5.2. Let f(a, n) denote the number of solutions (x, y) ∈ Sn × Sn of

x− y ≡ a (mod n).

Then, for (m,n) = 1,

f(a,mn) = f(a,m)f(a, n).

Proof. It follows from the definition of f(a, n) and the Chinese Remainder
Theorem. �

For a monic k ∈ A+ and its divisor r, write k and r as a canonical factor-
ization of monic irreducible polynomials Pi in A

+ :

k =
∏

P eii , r =
∏

P fii .

Define

(7) k∗ =
∏

P ei−1
i ,

(8) ψ(r, k) =
∏

fi<ei

|Pi|
ei−1(|Pi| − 1)

∏

fi=ei

|Pi|
ei−1(|Pi| − 2)

and for su = k with s, u ∈ A+, define

e(s, u, k) =
∑

t|u

µ(t)ψ(st, k).

Lemma 5.3. Let notations be the same. Then

(i) ψ(1, k) = φ(k).

(ii) Let s =
∏

i

P gii be a monic divisor of k. Then

e(s, u, k) =







0 if k∗ ∤ s,
∏

gi<ei

|Pi|
ei−1

∏

gi=ei

|Pi|
ei−1(|Pi| − 2) if k∗ | s.

(iii)
∑

su=k

e(s, u, k) = φ(k).

Proof. The proofs follow from the definitions, especially the last two results
from induction on the number of prime divisors of k. �

Lemma 5.4. Let k be an element in A+ and r be a divisor of k in A+. Let
α, β independently run through the generators of Λk. Then the generators of

Λr occur ψ(r, k) times among the subtraction α − β, where ψ(r, k) is given in

Eq.(8).
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Proof. Let ε be a fixed generator of Λk and put α = ρx(ε), β = ρy(ε), where
x, y run through reduced residue systems modulo k. Write k = rs, γ = α−β =
ρx−y(ε). Then we see that γ is a generator of Λr if and only if

x− y ≡ as (mod k),

where (a, r) = 1. For fixed a and s, the number of solutions of this congruence
is f(as, k) as defined in Lemma 5.2. Then the result is immediate from Lemmas
5.1 and 5.2. �

Lemma 5.5. Letm,n ∈ A+ with (m,n)∗ = 1. Let α run through the generators

of Λm and β through the generators of Λn. Then γ = α − β runs through the

generators of ΛM φ(δ) times, where

δ = (m,n) ∈ A+,M = [m,n] = mn/δ.

Proof. The proof easily reduces to the case where m = P e and n = P f for a
prime P ∈ A+, e > f ≥ 0. Now if α is a generator of ΛP e and β is a generator
of ΛP f , then it is easily seen that γ = α − β is a generator of ΛP e with each
appearing exactly φ(P f ) times. �

We now have a slight generalization of Theorem 3.6.

Theorem 5.6. Let m,n ∈ A+ so that (m,n)∗ = k and put

M = [m/k, n/k] ∈ A+, δ = (m/k, n/k) ∈ A+.

Then

(9) Hm,n(x) =
∏

su=k

ΦM (ρs(x))
φ(δ)e(s,u,k) ,

where the product is restricted to those s that are divisible by k∗ in Eq.(7) and
e(s, u, k) is evaluated by Lemma 5.3. In particular, if k = 1, then

Hm,n(x) = ΦM (x)φ(δ),

where M = [m,n], δ = (m,n).

Proof. For given m,n ∈ A+, we define k = (m,n)∗ as is defined in Eq.(6).
Write

m = km′, n = kn′

so that

(m′, n′)∗ = 1.

Then by Eq.(5) we have

Hm,n(x) =
∏

{x− (α(k) + α(m′)) + (β(k) + β(n′))}

=
∏

{x− (α(k)− β(k)) − (α(m′)− β(n′))},
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where α(k), β(k) independently run through the primitive generators of Λk
and α(m′), β(n′) independently run through the primitive generators of Λm′

and Λn′ , respectively. By Lemmas 5.4 and 5.5 we have

(10) Hm,n(x) =
∏

r|k

∏

{x− (γ(r) − α(M))}ψ(r,k)φ(δ),

where in the inner product γ(r) runs through the primitive generators of Λr,
and α(M) runs though the generators of ΛM , where

δ = (m′, n′), M = [m′, n′].

Since (r,M) = 1, γ(r) − α(M) runs through the generators of ΛrM . Hence
Eq.(10) becomes

Hm,n(x) =
∏

r|k

(ΦrM (x))ψ(r,k)φ(δ).

Using the formula in Proposition 2.2(iii) we obtain

Hm,n(x) =
∏

r|k

∏

s|r

(ΦM (ρs(x))
µ(r/s)ψ(r,k)φ(δ)

=
∏

s|k

∏

t|k/s

(ΦM (ρs(x))
µ(t)ψ(st,k)φ(δ)

=
∏

s|k

(ΦM (ρs(x))
φ(δ)

∑
t|k/s µ(t)ψ(st,k)

=
∏

su=k

(ΦM (ρs(x))
φ(δ)e(s,u,k) ,

where e(s, u, k) is given by Lemma 5.3. Then the result follows immediately
from Lemma 5.3. �

Finally we note that Theorem 3.6(1) is an easy corollary of Theorem 5.6.

Corollary 5.7. If m and n are distinct monics in A such that deg(m) ≥
deg(n) > 0, and m = nP e for some monic prime P, then Hm,n(0) = Pφ(n).

Proof. For given m = P en and n, put k = (m,n)∗, M = [m/k, n/k] and
δ = (m/k, n/k). Then we easily see that M is a power of P. By Eq.(9) and
Lemma 5.3(iii) we have

(11) Hm,n(0) = Pφ(δ)φ(k) = Pφ(δk),

where the last equality follows from the relation (δ, k) = 1. Now we first consider
the case (n, P ) = 1. Then we have k = n and δ = 1, so we obtain Hm,n(0) =

Pφ(n) from Eq.(11). For the case where (n, P ) 6= 1, write n = n0P
f with

(P, n0) = 1. Then k = n0 and δ = P f , so φ(δk) = φ(P f )φ(n0) = φ(n), hence
Eq.(11) gives the desired result. �
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We close the paper by remarking that for m = nP e with a prime P ∈ A+,
we have Hm,n(ζ) = Pφ(n) if ζ denotes an element of Λk∗ (not necessarily a
generator).
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