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ABSTRACT

Operation time of a function or procedure is a thing that always needs to be optimized. Parallelizing

the operation is the general method to reduce the operation time of the function. One of the most powerful

parallelizing methods is using GPU. In image processing field, one of the most commonly used operations

is morphology operation. Three types of morphology operations kernel, naïve, global and shared, are

presented in this paper. All kernels are made using CUDA and work parallel on GPU. Four morphology

operations (erosion, dilation, opening, and closing) using square structuring element are tested on MRI

images with different size to measure the speedup of the GPU implementation over CPU implementation.

The results show that the speedup of dilation is similar for all kernels. However, on erosion, opening,

and closing, shared kernel works faster than other kernels.

Key words: Time complexity measurement, GPU parallel architecture, Morphology operation, CUDA,

MRI images.

※ Corresponding Author : Heung-Kook Choi, Address

: (621-749) Dept. of Computer Engineering, UHRC, Inje

University, Injero 197, Gim-Hae, Gyeong-Nam, Korea

TEL : +82-55-320-3437, FAX : +82-55-322-3107, E-mail

: cschk@inje.ac.kr

Receipt date : Dec. 31, 2012, Revision date : Jan. 25, 2013

Approval date : Jan. 29, 2013
††Department of Computer Engineering, Inje University,

Korea

(E-mail: yonny.septian@gmail.com)
††Department of Computer Engineering, UHRC, Inje

University, Korea

※ This research was supported by Basic Science research

Program through the National research Foundation of

Korea (NRF) funded by the Ministry of Education,

Science and technology (2012-0002646).

1. INTRODUCTION

Morphology operation is an operation that works

on image shape and form instead of the pixel

intensity. The term mathematical morphology is

usually used to express the set theory. Sets in

mathematical morphology represent the shapes

which are manifested on binary or gray tone

images. The set of all the black pixels in a black

and white image, (a binary image) constitutes a

complete description of the binary image [1]. In im-

age processing and computer vision field, mathe-

matical morphology is defined as a set of oper-

ations that works on any types of image.

There are two main types of image where mor-

phology operations can be applied, gray scale and

binary image. Gray scale image is a type of image

that has 2
n
intensity level, where n is a range of

integer from 2 to 8. Binary image is image that

only has two types of pixel value, black and white,

which usually expressed as 0 and 1. It is possible

to obtain binary image from gray scale image using

threshold operation. It works by setting the pixel

value below the threshold value to 0 and the pixel

value above the threshold value to 1 (1).

(1)

A(x) and B(x) are input image and output image,

respectively, and t is the threshold value. The

threshold value can be determined manually or

automatically. In manual mode, threshold value is

defined and adjusted until the output image is

satisfying. On the other hand, automatic mode

tends to get the threshold value based on parame-
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ters of the image. Several automatic threshold

methods have been made introduced; Otsu in-

troduced threshold method that minimizes the intra

class variance [2], Li introduced minimum cross

entropy threshold method [3], JN Kapur, et al. used

maximum entropy threshold method [4], and

Prewitt, et al. introduced minimum threshold

method [5]. Each of this method has its own func-

tion and specific application; therefore there is no

threshold method that can work well for all types

of image.

The morphology operations consist of two basic

operations; erosion and dilation. The other oper-

ations, opening and closing, that are based on them.

There are many applications field of morphology

operation, such as brain segmentation of MR image

[6] and cell segmentation [7]. Morphology oper-

ations work using structuring element, which is a

small binary image used as shape mask in basic

morphological operations. Structuring element can

be any shape and size, and they must have an ori-

gin (usually it is the center pixel). The function

of this origin is as reference pixel to write the out-

put value. Shapes that are commonly used are

square, hexagon, circle and disk [8]. The erosion

operation is denoted as A⊖B, where A is the bina-

ry image and B is the structuring element. It is

expressed by (2). This equation means that erosion

is the set of all points z such that B, translated by

z, is contained in A.

(2)

On contrary, dilation operation is denoted as A⊕

B and expressed by (3). It means that dilation is

the set of all displacements z, such that B and A

overlap by at least one pixel.

(3)

Opening and closing are combinations of erosion

and dilation. Opening is erosion operation followed

by dilation operation (4), whereas closing is dilation

operation followed by erosion operation (5).

(4)

(5)

2. METHODS

2.1 GPGPU and CUDA

Graphics Process Unit (GPU) was commonly

used for graphics rendering and display on monitor.

Nowadays, GPU is not only used for display pur-

pose but also for computation, which is called as

GPGPU (General Purpose Graphic Processing

Unit). There are many computations that are al-

ready applied on it. GPU is well-suited for prob-

lems that can be expressed as data-parallel com-

putations–the same program or function that is

executed on many data elements in parallel–with

high arithmetic intensity. Some specific algorithms

such as genetic [9], Smith-Waterman [10] and

connected component labeling [11] have been im-

plemented using GPU. Because of this parallel

computation utility, NVIDIA introduced CUDA

(Computed Unified Device Architecture) in 2006

[12]. CUDA is a general purpose parallel computing

architecture–with a new parallel programming

model and instruction set architecture–that en-

ables NVIDIA GPUs to solve many complex com-

putational problems more efficiently than CPU. It

also comes with programming environment of

CUDA C, a C-like programming language that is

easier to be understood and learned than many un-

familiar rendering code and syntax such as

OpenGL or OpenCL.

GPU consists of several types of memory. Their

hierarchy can be seen on Fig. 1. Each memory has

its specific usage and characteristics, such as

speed, size, etc. Fig. 2 shows the hierarchy of

thread, block, and grid. CUDA documentation

made by NVIDIA stated that the fastest memory

on GPU is shared memory, which is located on

GPU chip. This memory is accessible for all

threads in one block [13]. The smallest part of

GPU is called thread and the parallel computation

takes place on it. Kernel, which is a set of com-
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Fig. 1. GPU Memory Hierarchy.

Fig. 2. CUDA Grid-Block-Thread Organization.

Fig. 3. 3×3 structuring element.

mands or functions, will be executed parallel on

each thread on GPU.

In this paper, we propose architectures for ero-

sion and dilation operation on GPU using CUDA.

There are 3 types of architecture that we propose,

naïve, global, and shared. Each of these archi-

tectures has different way to access the pixel value

of the input image. These architectures are tested

on several images with different size to get the

speed on each of them. The remainder of this paper

is organized as follows: In section 2 we describe

the architecture for erosion and dilation. In section

3, we will test the architectures on several images

and compare the results. Finally, we conclude this

work in section 4.

2.2 PROPOSED ARCHITECTURE

As mentioned in the previous section, morphol-

ogy operation works by sliding the structuring ele-

ment on every pixel in input image. In sequential

mode, the structuring element will slide to the right

until the end of row, and then it will go to the lower

row and repeat the same sliding process. The mor-

phology operation works differently compared by

filtering operation where the parallel process is

done by separating the filter into row and column

operations. In morphology operation, structuring

element works as one unit that cannot be separated

into row and column operations. Therefore, in par-

allel morphology operation, we should make sev-

eral structuring element at the same time and do

the morphology operations in parallel. To simplify

the comparison, a square structuring element and

same image were used.

2.2.1 Naïve Kernel

This kernel works only on global memory. Here,

the index of pixels must be defined manually.

Therefore, the size of structuring element is also

limited to the defined size. For example, if the size

of structuring element which is defined only 3×3,

4×4 and 5×5, we cannot use other sizes of structur-

ing element, unless we redefine the kernel itself.

This is the limitation of naïve kernel.

Index of a thread is defined by the number of

threads per block, image width, block index for

x-y, and thread index for x-y. Structuring element

which maximum size is 7×7 is defined for this

kernel. Fig. 3 is an example of structuring element

which size is 3×3. Before defining the pixel index,

we need to define 2D index in x and y (6). The
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center pixel index, i4, is defined as (7) and the index

of pixels around it is determined by respect of the

center pixel index [14]. For example, index of the

bottom right pixel, i8, is defined as (8).

(6)

(7)

(8)

In erosion, this kernel checks all pixel values

within the structuring element. If all of the pixel

values are 1, then this kernel will assign 1 on the

center pixel of the output image. In dilation, if the

pixel value in input image is 1, then this kernel

write assign 1 for all pixels within the kernel size

on the output image.

2.2.2 Global Kernel

This kernel also works only on global memory.

The difference between global kernel and naïve

kernel is the way to define the index of pixels. 2D

index is still defined by (6), but a new parameter,

RADIUS, is introduced in order to define the pixel

index automatically. Change in RADIUS means

change in structuring element size, and it also

changes the index of pixels.

For erosion operation, another parameter called

COUNTER is introduced. This parameter is used

to count the number of pixel which value is 1 in

the input image. The global erosion kernel checks

the pixel values within the RADIUS. Each time an

object pixel (which value is 1) is found, COUNTER

will increase its value by 1. After all pixels within

the RADIUS are checked, this kernel will assign

1 to the center of the output image if and only if

the COUNTER value meets a specific condition.

This condition is described in Fig. 4. This figure

shows the erosion kernel that consists of 4 areas

with white color, 4 areas with gray color and 1

center pixel which color is black. This is the final

condition of COUNTER that must be fulfilled.

Therefore, COUNTER must equal to (9) before as-

signing 1 on the center of the output image.

(9)

Fig. 4. Condition of COUNTER.

Dilation operation works by the simpler way.

This kernel will read all pixels in the input image

one by one. If the pixel value is 1, then this kernel

will assign 1 within the RADIUS in the output

image.

2.2.3 Shared Kernel

Unlike naïve kernel and global kernel that work

only on global memory, shared kernel works on

both of global and shared memory. Shared memory

is often used to hold the portion of global memory

data that are heavily used in an execution phase

of kernel [15]. In CUDA architecture, loaded input

image is always located on global memory.

Therefore, input image must be copied to shared

memory first before the morphology operations are

applied. In order to copy input image from global

memory to shared memory, new 2D index which

consists of sx and sy is introduced (10). This new

index will be used for accessing shared memory

index. Here, RADIUS parameter is the same pa-

rameter that is used in global kernel for automatic

pixel indexing.

(10)

The size of shared memory is defined by (11),

where TILE_W and TILE_H as width and height

of shared memory, respectively. RADIUS is also

put in shared memory size definition because in
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Fig. 5. Shared Memory Organizations.

Fig. 6. Brain Axial MR Image.

this shared kernel, morphology operations work by

reading not only the pixel value within the struc-

turing element, but also the pixels around it.

Morphology operations can only be applied on the

center of the input image on shared memory unless

the RADIUS is put in the size definition. Some im-

age information might lose because morphology

operation cannot work for the pixels on the edge

of shared memory. This edge extension of shared

memory can be performed by taking RADIUS into

the size definition of shared memory. This shared

memory extension is called halo. Fig. 5 shows the

shared memory organizations. The white area is

part of input image where morphology operation

will take place. In order to perform morphology op-

erations on the edge of white area, gray area (halo)

is used.

(11)

Erosion operation on shared kernel uses the

same method as erosion operation on global kernel.

Similarly, dilation operation also uses the same

method as dilation operation on global kernel. The

difference is that the input image is located on

shared memory, instead of global memory. Never-

theless, the final assignment is done on global

memory directly.

3. RESULTS

In this paper, an axial MR image (Fig. 6) with

3 types of image resolution (512×512, 1024×1024,

and 2048×2048) were used to test the architectures.

The original image (512×512 3T MRI image) was

acquired using Philips Medical System MR device

from Haeundae Paik Hospital. The other reso-

lutions were obtained using bilinear interpolation

of the original image. The experiment on the same

image with different resolutions was done in order

to compare the result for all resolutions.

All tests run on Intel Xeon 2.6GHz processor and

NVIDIA Quadro56 graphic card. The working en-

vironments were Microsoft Visual Studio 2005 and

CUDA Toolkit 4.0. The similar sequential algo-

rithm was also applied to obtain the speedup of

GPU over CPU. The speedup results were calcu-

lated by dividing CPU time by the execution time

for each kernel. The time results were summarized

in Table 1 and the speedup results were shown in

Table 2. Fig. 7 shows the graphical results of the

execution time and speedup for each resolution:

512×512, 1024×1024, and 2048×2048, respectively.

Each operation was depicted by different line: solid

line for erosion, dash-dot line for dilation, dashed

line for opening, and dotted line for closing.

From these results, it can be seen clearly that

the implementation of the algorithm in CPU needs

longer execution time than GPU, regardless of the
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Table 1. Time Results

Image Size
Morphology
Operation

Time (ms)

CPU Naive Global Shared

512×512

Erosion 89.584 11.352 32.992 3.097

Dilation 73.838 20.95 20.702 21.31

Opening 159.739 32.335 53.763 24.029

Closing 159.661 35.42 54.614 24.026

1024×1024

Erosion 326.545 44.771 130.581 11.226

Dilation 289.739 76.809 81.947 80.843

Opening 621.268 122.076 212.501 92.141

Closing 618.391 122.089 212.578 92.197

2048×2048

Erosion 1226.743 189.297 527.8 45.162

Dilation 1133.518 313.792 330.197 329.672

Opening 2362.877 503.15 857.784 374.922

Closing 2361.636 503.187 858.035 374.296

Table 2. Speedup Results

Image Size
Morphology
Operation

Speedup (times)

Naive Global Shared

512×512

Erosion 7.89 2.72 28.93

Dilation 3.52 3.57 3.46

Opening 4.94 2.97 6.65

Closing 4.51 2.92 6.65

1024×1024

Erosion 7.29 2.50 29.09

Dilation 3.77 3.54 3.58

Opening 5.09 2.92 6.74

Closing 5.07 2.91 6.71

2048×2048

Erosion 6.48 2.32 27.16

Dilation 3.61 3.43 3.44

Opening 4.70 2.75 6.30

Closing 4.69 2.75 6.31

type of operation. Sequential processing will works

slower than parallel processing because it needs to

finish an operation firstly before doing other oper-

ations [16]. Therefore time needed in CPU im-

plementation is longer. Whereas, among the GPU

implementations, shared kernel works faster than

naïve and global kernel for erosion, opening and

closing operations. However, for dilation, there is

no significant difference in performance for all

kernels. The execution time needed to perform di-

lation is similar for all kernels.

4. DISCUSSION

All dilation kernels work by checking a value

on the input image. If the condition on input image

is met (the pixel value is one), more values will

be written on the output image. There is no differ-

ence whether the input image is located on global

memory or shared memory, because dilation oper-

ation will always write the output values on output

image that is located in global memory.

On the other hand, the results of erosion are

varied. Shared kernel is the fastest kernel among

all erosion kernels, followed by the results of naïve

and global kernel. The result variation is caused

by the principal difference between erosion and di-

lation, which is the way the operation reads the

input image and writes the output image. Erosion

kernel reads more input values than write the out-

put value. In shared kernel, where input image is

copied from global memory to shared memory, this

kernel will read the input values of image on shared

memory and write an output value to global mem-

ory for every kernel execution. The low latency of

shared memory [12] makes this kernel performs

fast.

Both of naïve and global kernel work on global
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(a)

(b)

(c)

Fig. 7. The result of execution time (left) and speedup (right) of the architectures on image which size

is: (a) 512×512, (b) 1024×1024, (c) 2048×2048.

memory, but the result shows that naïve kernel is

faster than global kernel. This is caused by direct

pixel index assignment and checking on naïve

kernel. This kernel does not need to traverse within

the structuring element to check the pixel values

of input image as in global kernel. In global kernel

implementation, the process of traversing within

the structuring element is not only used in erosion,

but also in dilation. However, the result shows that

dilation is faster than erosion. This result states

that reading the input image on global memory

takes longer time than writing the output image

on global memory.

Fast performance of erosion on shared kernel af-

fects the performance of closing and opening oper-

ations directly. Their performances have the sim-
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ilar patterns as erosion, where shared kernel is the

fastest kernel, followed by naïve and global kernel.

In our experience, the performance of closing and

opening are quite similar because both of them ap-

ply the same operations (erosion and dilation), even

though the order is reversed.

Our experimental results show that the highest

speedup was achieved by shared kernel for erosion

operation. This speedup was 29 times faster than

the erosion on CPU. However, there was no sig-

nificant difference in speedup for different image

resolution, as seen in Fig. 7. The speedups for all

image resolutions are quite similar with a small

variation on each of them.

5. CONCLUSION

3 types of GPU kernels were made to apply the

basic morphology operations (erosion, dilation,

opening, and closing). CPU implementation was al-

so performed as the benchmark. In our experiment,

CPU implementation was the slowest compared to

other GPU kernels. Dilation operation took almost

the same amount of time for all kernels. This was

caused by the usage of the same method to read

the input image and write some values on output

image. Erosion, opening and closing operations on

shared kernel performed faster than other kernels

because the input image was read from shared

memory, which has low latency. Whereas, the tra-

versing within the structuring element on global

kernel made it performed slower than the naïve

kernel, which already defined the index of pixel

within the structuring element.
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