참고문헌
- ACI 211.3 (2002), Guide for selecting proportions for no-slump concrete, Farmington Hills (MI).
- Adeloye, A. and Munari, A. (2006), "Artificial neural network based generalized storage-yield-reliability models using the Levenberg-Marquardt algorithm", J. Hydrol., 326(1-4), 215-230. https://doi.org/10.1016/j.jhydrol.2005.10.033
- Acevedo-Rodriguez, J., Maldonado-Bascon, S., Lafuente-Arroyo, S., Siegmann, P. and Lopez-Ferreras, F. (2009), "Computational load reduction in decision functions using support vector machines", Signal Process, 89(10), 2066-2071. https://doi.org/10.1016/j.sigpro.2009.03.032
- American Society for Testing and Materials, (2009a), ASTM C150/C150M-09 Standard specification for Portland cement, Annual Book of ASTM Standard Vol. 4.01, Philadelphia.
- American Society for Testing and Materials, (2009b), ASTM C39/C39M-09a Standard test method for compressive strength of cylindrical concrete specimens, Concrete Specimens, Annual Book of ASTM Standard Vol. 4.01, Philadelphia.
- An, S.H., Park, U.Y., Kang, K., Cho, M.Y. and Cho, H.H. (2007), "Application of support vector machines in assessing conceptual cost estimates", ASCE J. Comput. Civil Eng., 21(4), 259-264. https://doi.org/10.1061/(ASCE)0887-3801(2007)21:4(259)
- Bilim, C., Atiş, C.D., Tanyildiz, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
- Chen, B.T., Chang, T.P., Shih, J.Y. and Wang, J.J. (2009), "Estimation of exposed temperature for fire-damaged concrete using support vector machine", Comput. Mater. Sci., 44(3), 913-920. https://doi.org/10.1016/j.commatsci.2008.06.017
- Cheng, M.Y. and Wu, Y.W. (2009), "Evolutionary support vector machine inference system for construction management", Automat. Constr., 18(5), 597-604. https://doi.org/10.1016/j.autcon.2008.12.002
- Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput Civil Eng., 25(3), 242-254. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mac. Learn., 20(3), 273-297.
- Das, S.K., Samui, P. and Sabat, A.K. (2011), "Prediction of field hydraulic conductivity of clay liners using artificial neural network and support vector machine", ASCE Int. J. Geomech., 12(5), 606-611.
- Fausett, L.V. (1994), Fundamentals of neural networks: architectures, algorithms, and applications, Prentice Hall.
- Fazel Zarandi, M., Turksen, I.B., Sobhani, J. and Ramezanianpour, A.A. (2008), "Fuzzy polynomial neural networks for approximation of the compressive strength of concrete", Appl. Soft Comput., 8(1), 488-498. https://doi.org/10.1016/j.asoc.2007.02.010
- Ghaboussi, J., Garrett, J.H. and Wu, X. (1991), "Knowledge-based modeling of material behavior with neural networks", J. Eng. Mech.-ASCE, 117(1), 117-139.
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the Marquardt algorithm", IEEE T. Neural Networ., 5(6), 989-993. https://doi.org/10.1109/72.329697
- Lam, K.C., Palaneeswaran, E. and Yu, C.Y. (2009), "A support vector machine model for contractor prequalification", Automat. Constr., 18, 321-329. https://doi.org/10.1016/j.autcon.2008.09.007
- Mashford, J. and Marlow, D. (2010), "Prediction of sewer condition grade using support vector machines", J. Comput. Civil Eng., 25(4), 283-290.
- Neural Network Toolbox (MathWorks-a), www.mathworks.com/help/toolbox/nnet/
- Global Optimization Toolbox (MathWorks-b), www.mathworks.com/products/gads/
- Ni Hong-Guang, W.J.Z. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(8), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
- Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
- Oztas, A., Pala, M. and Ozbay, E., (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Pal, M. and Deswal, S. (2011), "Support vector regression based shear strength modelling of deep beams", Comput. Struct., 89(13-14), 1430-1439. https://doi.org/10.1016/j.compstruc.2011.03.005
- Rakotomamonjy, A. (2005), SVM and Kernel Methods Matlab Toolbox http://asi.insa-rouen.fr/enseignants/-arakotom/toolbox/index.html
- Ramezanianpour, A.A., Sobhani, M. and Sobhani, J. (2004), "Application of network based neuro-fuzzy system for prediction of the strength of high strength concrete", AKU J. Sci. Technol., 15 (59-C), 78-93.
- Samui, P. and Kim, D. (2012), "Utilization of support vector machine for prediction of fracture parameters of concrete", Comput. Concrete, 9(3), 215-226. https://doi.org/10.12989/cac.2012.9.3.215
- Sarıdemir, M. (2009), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008
- Scholkopf, B. (1997), Support vector learning, Munich: R. Oldenbourg.
- Shelestynsky, E. (1972), The workability of no-slump concrete, University of Western Ontario.
- Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models", Constr. Build. Mater, 24(5), 709-718. https://doi.org/10.1016/j.conbuildmat.2009.10.037
- Tinoco, J., Gomes Correia, A. and Cortez, P. (2011), "Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time", Constr. Build. Mater., 25(3), 1257-1262. https://doi.org/10.1016/j.conbuildmat.2010.09.027
- Tong, F., Xu, X.M., Luk, B.L. and Liu, K.P. (2008), "Evaluation of tile-wall bonding integrity based on impact acoustics and support vector machine", Sensor. Actuat. A-Phys., 144(1), 97-104. https://doi.org/10.1016/j.sna.2008.01.020
- Uysal, M. and Tanyildizi, H. (2011), "Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network", Constr. Build. Mater., 25(11), 4105-4111. https://doi.org/10.1016/j.conbuildmat.2010.11.108
- Vapnik, V.N. (2000), The nature of statistical learning theory, Springer Verlag.
- Vapnik, V.N. (1998), Statistical learning theory, Wiley-Interscience.
- Wan, C. and Mita, A. (2010), "Early warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class Support vector machines", Smart Struct. Syst., 6(4), 405-421. https://doi.org/10.12989/sss.2010.6.4.405
- Wang, L., Mu, Z. and Guo, H. (2006), "Application of support vector machine in the prediction of mechanical property of steel materials", J. Univ. Sci. Tech. Beijing, Min. Met. Mater., 13(6), 512-515.
- Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater, 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006
- Yinfeng, D.m Yingmin, L., Ming, L. and Mingkui, X. (2008), "Nonlinear structural response prediction based on support vector machines", J. Sound Vib., 311(3-5), 886-897. https://doi.org/10.1016/j.jsv.2007.09.054
- Zain, M. and Abd, S. (2009), "Multiple regression model for compressive strength prediction of high performance concrete", J. Appl. Sci., 9(1), 155-160. https://doi.org/10.3923/jas.2009.155.160
피인용 문헌
- Support vector machines in structural engineering: a review vol.21, pp.3, 2015, https://doi.org/10.3846/13923730.2015.1005021
- Modelling the fresh properties of self-compacting concrete using support vector machine approach vol.106, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.035
- Monotonicity preserving SIRMs-connected fuzzy inference system for predicting HPC compressive strength 2018, https://doi.org/10.3233/IDT-180334
- Wearable Glove-Type Driver Stress Detection Using a Motion Sensor vol.18, pp.7, 2017, https://doi.org/10.1109/TITS.2016.2617881
- Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine pp.2095-2449, 2018, https://doi.org/10.1007/s11709-018-0489-z
- Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine vol.18, pp.6, 2016, https://doi.org/10.12989/cac.2016.18.6.1065
- Regression and ANN models for durability and mechanical characteristics of waste ceramic powder high performance sustainable concrete vol.25, pp.2, 2013, https://doi.org/10.12989/cac.2020.25.2.119
- Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach vol.32, pp.12, 2013, https://doi.org/10.1007/s00521-019-04267-w
- Artificial Intelligence for Compressive Strength Prediction of Concrete vol.1004, pp.None, 2020, https://doi.org/10.1088/1757-899x/1004/1/012010
- Predicting the mechanical properties of cement mortar using the support vector machine approach vol.291, pp.None, 2013, https://doi.org/10.1016/j.conbuildmat.2021.123396
- Data-driven model for ternary-blend concrete compressive strength prediction using machine learning approach vol.301, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.124152
- Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation vol.213, pp.None, 2022, https://doi.org/10.1016/j.matdes.2021.110334