DOI QR코드

DOI QR Code

Theoretical analysis of transient wave propagation in the band gap of phononic system

  • Lin, Yi-Hsien (Department of Mechanical Engineering, National Taiwan University) ;
  • Ma, Chien-Ching (Department of Mechanical Engineering, National Taiwan University)
  • Received : 2013.02.18
  • Accepted : 2013.02.25
  • Published : 2013.03.25

Abstract

Phononic system composed of periodical elastic structures exhibit band gap phenomenon, and all elastic wave cannot propagate within the band gap. In this article, we consider one-dimensional binary materials which are periodically arranged as a 20-layered medium instead of infinite layered system for phononic system. The layered medium with finite dimension is subjected to a uniformly distributed sinusoidal loading at the upper surface, and the bottom surface is assumed to be traction free. The transient wave propagation in the 20-layered medium is analyzed by Laplace transform technique. The analytical solutions are presented in the transform domain and the numerical Laplace inversion (Durbin's formula) is performed to obtain the transient response in time domain. The numerical results show that when a sinusoidal loading with a specific frequency within band gap is applied, stress response will be significantly decayed if the receiver is away from the source. However, when a sinusoidal force with frequency is out of band gap, the attenuation of the stress response is not obvious as that in the band gap.

Keywords

Acknowledgement

Supported by : National Science Council

References

  1. Brekhovskikh, L.M. (1980), Waves in layered media, Academic, New York.
  2. Beskos, D.E. and Narayanan, G.V. (1983), "Dynamic response of frameworks by numerical Laplace transform", Comput. Meth. Appl. Mech. Eng., 37(3), 289-307. https://doi.org/10.1016/0045-7825(83)90080-4
  3. Black, M.C., Carpenter, E.W. and Spencer, A.J.M. (1960), "On the solution of one dimensional elastic wave propagation problems in stratified media by the method of characteristics", Geophys. Prospect., 8(2), 218-230. https://doi.org/10.1111/j.1365-2478.1960.tb01498.x
  4. Chen, X., Chandra, N. and Rajendran, A.M. (2004), "Analytical solution to the plate impact problem of layered heterogeneous material systems", Int. J. Solids Struct., 41(16-17), 4635-4659. https://doi.org/10.1016/j.ijsolstr.2004.02.064
  5. Durbin, F. (1974), "Numerical inversion of laplace transforms: an efficient improvement to Dubner and Abate's method", Comput. J., 17(4), 371-376. https://doi.org/10.1093/comjnl/17.4.371
  6. Ewing, W.M., Jardetzky, W.S. and Press, F. (1957), Elastic waves in layered media, McGraw-Hill, New York.
  7. Haskell, N. (1953), "The dispersion of surface waves on multilayered media", B. Seismol. Soc. Am., 43, 17-34.
  8. Hegemier, G.A. and Nayfeh, A.H. (1973), "A continuum theory for wave propagation in laminated composites. case 1: propagation normal to the laminates", J. Appl. Mech.-T. ASME, 40(2), 503-510. https://doi.org/10.1115/1.3423013
  9. Kumar, R. and Gupta, R.R. (2010), "Analysis of wave motion in micropolar transversely isotropic thermoelastic half space without energy dissipation", Interact. Multiscale Mech., 3(2), 145-156. https://doi.org/10.12989/imm.2010.3.2.145
  10. Kushwaha, M.S. and Djafari-Rouhani, B. (1998), "Giant sonic stop bands in two-dimensional periodic system of fluids", J. Appl. Phys., 84(9), 4677-4683. https://doi.org/10.1063/1.368710
  11. Lamb, H. (1904), "On the propagation of tremors over the surface of an elastic solid", Philos. T. R. Soc. A, 203(359-371), 1-42. https://doi.org/10.1098/rsta.1904.0013
  12. Lee, G.S. and Ma, C.C. (1999), "Transient elastic waves propagating in a multi-layered medium subjected to in-plane dynamic loadings i. theory", Proc. R. Soc. Lond. A, 456(1998), 1355-1374.
  13. Lin, Y.H. and Ma, C.C. (2011), "Transient analysis of elastic wave propagation in multilayered structures", CMC-Comput. Mater. Con., 24(1), 15-42.
  14. Liu, Z., Chan, C.T., Sheng, P., Goertzen, A.L. and Page, J.H. (2000), "Elastic wave scattering by periodic structures of spherical objects: theory and experiment", Phys. Rev. B, 62(4), 2446-2457. https://doi.org/10.1103/PhysRevB.62.2446
  15. Lundergan, C.D. and Drumheller, D.S. (1971), "Propagation of stress waves in a laminated plate composite", J. Appl. Phys., 42(2), 669-675. https://doi.org/10.1063/1.1660078
  16. Manolis, G.D. and Beskos, D.E. (1980), "Thermally induced vibrations of beam structures", Comput. Meth. Appl. Mech. Eng., 21(3), 337-355. https://doi.org/10.1016/0045-7825(80)90101-2
  17. Manolis, G.D. and Beskos, D.E. (1981), "Dynamic stress concentration studies by boundary integrals and Laplace transform", Int. J. Numer. Meth. Eng., 17(4), 573-599. https://doi.org/10.1002/nme.1620170407
  18. Ma, C.C. and Huang, K.C. (1996), "Analytical transient analysis of layered composite medium subjected to dynamic inplane impact loadings", Int. J. Solids Struct., 33(28), 4223-4238. https://doi.org/10.1016/0020-7683(95)00243-X
  19. Ma, C.C. and Lee, G.S. (1999), "Transient elastic waves propagating in a multi-layered medium subjected to in-plane dynamic loadings ii. numerical calculation and experimental measurement", Proc. R. Soc. Lond. A, 456(1998), 1375-1396.
  20. Ma, C.C., Liu, S.W. and Lee, G.S. (2001), "Dynamic response of a layered medium subjected to anti-plane loadings", Int. J. Solids Struct., 38(50), 9295-9312. https://doi.org/10.1016/S0020-7683(01)00092-0
  21. Ma, C.C. and Lee, G.S. (2006), "General three-dimensional analysis of transient elastic waves in a multilayered medium", J. Appl. Mech.-T. ASME, 73(3), 490-504. https://doi.org/10.1115/1.2125989
  22. Munjal, M.L. (1993), "Response of a multi-layered infinite plate to an oblique plane wave by means of transfer matrices", J. Sound Vib., 162(2), 333-343. https://doi.org/10.1006/jsvi.1993.1122
  23. Mukunoki, I. and Ting, T.C.T. (1980), "Transient wave propagation normal to the layering of a finite layered medium", Int. J. Solids Struct., 16(3), 239-251. https://doi.org/10.1016/0020-7683(80)90077-3
  24. Narayanan, G.V. and Beskos, D.E. (1982), "Numerical operational methods for time-dependent linear problems", Int. J. Numer. Meth. Eng., 18(12), 1829-1854. https://doi.org/10.1002/nme.1620181207
  25. Pekeris, C.L., Alterman, Z., Abramovici, F. and Jarosh, H. (1965), "Propagation of a compressional pulse in a layered solid", Rev. Geophys., 3(1), 25-47. https://doi.org/10.1029/RG003i001p00025
  26. Papoulis, A. (1957), "A new method of inversion of the Laplace transform", Q. Appl. Math., 14, 405-414. https://doi.org/10.1090/qam/82734
  27. Ponnusamy, P. and Selvamani, R. (2012), "Wave propagation in a generalized thermo elastic plate embedded in elastic medium", Interact. Multiscale Mech., 5(1), 13-26. https://doi.org/10.12989/imm.2012.5.1.013
  28. Providakis, C.P. and Beskos, D.E. (1986), "Dynamic analysis of beams by the boundary element method", Comput. Struct., 22(6), 957-964. https://doi.org/10.1016/0045-7949(86)90155-0
  29. Psarobas, I.E. and Sigalas, M.M. (2002), "Elastic band gaps in a fcc lattice of mercury spheres in aluminum", Phys. Rev. B, 66(5), 052302.
  30. Su, X.Y., Tian, J.Y. and Pao, Y.H. (2002), "Application of the reverberation-ray matrix to the propagation of elastic waves in a layered solid", Int. J. Solids Struct., 39(21-22), 5447-5463. https://doi.org/10.1016/S0020-7683(02)00358-X
  31. Sun, C.T., Achenbach, J.D. and Herrmann, G. (1968), "Time-harmonic waves in a stratified medium propagating in the direction of the layering", J. Appl. Mech.-T. ASME, 35(2), 408-411. https://doi.org/10.1115/1.3601212
  32. Sun, C.T., Achenbach, J.D. and Herrmann, G. (1968), "Continuum theory for a laminated medium", J. Appl. Mech.-T. ASME, 35(3), 467-475. https://doi.org/10.1115/1.3601237
  33. Stern, M., Bedford, A. and Yew, C.H. (1971), "Wave propagation in viscoelastic laminates", J. Appl. Mech.-T. ASME, 38, 448-454. https://doi.org/10.1115/1.3408796
  34. Sigalas, M.M. and Soukoulis, C.M. (1995), "Elastic wave propagation through disordered and/or absorptive layered systems", Phys. Rev. B, 51(5), 2780-2789. https://doi.org/10.1103/PhysRevB.51.2780
  35. Sigalas, M.M. and Garcia, N. (2000), "Importance of coupling between longitudinal and transverse components for the creation of acoustic band gaps: the aluminum in mercury case", Appl. Phys. Lett., 76(16), 2307-2309. https://doi.org/10.1063/1.126328
  36. Thomson, W.T. (1950), "Transmission of elastic waves through a stratified solid medium", J. Appl. Phys., 21(2), 89-93. https://doi.org/10.1063/1.1699629
  37. Ting, T.C.T. and Mukunoki, I. (1979), "A theory of viscoelastic analogy for wave propagation normal to the layering of a layered medium", J. Appl. Mech.-T. ASME, 46(2), 329-336. https://doi.org/10.1115/1.3424550
  38. Tang, Z. and Ting, T.C.T. (1985), "Transient waves in a layered anisotropic elastic medium", Proc. R. Soc. Lond. A, 397(1812), 67-85. https://doi.org/10.1098/rspa.1985.0004
  39. Tanaka, Y., Tomoyasu, Y. and Tamura, S. (2000), "Band structure of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch", Phys. Rev. B, 62(11), 7387-7392. https://doi.org/10.1103/PhysRevB.62.7387
  40. Wang, G., Yu, D.L., Wen, J.H., Liu, Y.Z. and Wen, X.S. (2004), "One-dimensional phononic crystals with locally resonant structures", Phys. Lett. A, 327(5-6), 512-521. https://doi.org/10.1016/j.physleta.2004.05.047
  41. Wu, F., Hou, Z., Liu, Z. and Liu, Y. (2001), "Point defect states in two-dimensional phononic crystals", Phys. Lett. A, 292(3), 198-202. https://doi.org/10.1016/S0375-9601(01)00800-3