S ets] =2 A Al 17 A A 235 20139 4€ (JKONI 17(2): 189-195, Apr. 2013)

A7]1: /@/ﬂ ol /\]—xﬂ O];ﬂ—‘o—]]ta
3| AEdY 7]3]—4 =X AgE

=
=
T 3t
—=

A History-based Dynamic Thread Pool Method for Reducing
Thread Creation and Removal Overheads

o

1 M

o 4", YA

—

Sam—Kweon Oh", Jin—Sub Kim"

e o
23]e] Aol nidsta AyAzte] g2 AGoM, 2= A B AAR QT SHFHES Fo 29
Alaas FA717 Al iiﬂlc% ‘?}‘f’éo] A5 *P%Qﬂr agolA AEvia 2dEE ¥e AUz 28

20 AgE 9, 2ol A
A58 Aealo} sz

“IHEE

gtk B =Ro o]y

gl A~ =7}
4= Y= Aoz 9l
Azd owld|=sl 2vleln A% A A

S8 oA SRS Tl TH AAEE WHE AL, of WHE AAL B A S8
st gAgemA 2= 4 3 A2 B SHAZE T, ATES G Abge S8
v 2= E WAT BlEsle] Bi 2dE 4 BE 33% 2/ 2 A4 e B 62% dages
A B 6% A28 AT 378 Bl

Abstract

In an environment with frequent job requests and short job processing times, thread pool methods are
frequently used to increase throughput by reducing overheads due to thread creation and removal. A watermark
method normally reduces unnecessary uses of resources by keeping the number of threads less than those
needed in the maximum. In the absence of available threads, however, it processes jobs by creating additional
threads up to a specified limit so that the system overhead increases due to creation of threads, which results
in throughput degradation. This paper presents a history-based dynamic method that alleviates throughput
degradation. By estimating and maintaining the number of threads needed for jobs, it reduces overheads due
to thread creation and removal. According to experiments, compared to the watermark thread pool method,
it shows average 33% increase in the number of threads kept and average 62% reduction in the number of

threads created, which results in 6% increase in terms of system throughput.

Key words : History-based, Dynamic Thread Pool, Overhead, Throughput
719« SlaEY-7IRE §3 AEE E HElE, A

[. Introduction

A thread is the smallest sequence of program

instructions that can be executed by the OS scheduler

« Atk rolo|e]l gt st AFE F8HAF (College of NewlT Engineering(Department of Computer Engineering), Hoseo University)

- A1AA (First Author) @ &
- A4zt 20139 2€ 18¢Y

http://dx.doi.org/10.12673/jkoni.2013.17.2.189

AFA(Sam Kweon Oh, Tel

© +82—41-540—-5711, email
- ARKEE) A - 2013 29 189 (84 - 20131 4€ 169) -

: ohsk@hoseo.edu)
AALAL : 201393 49 302

190 S8 8)ets] =24 A 174 A 23 20139 49 (JKONI 17(2): 189-195, Apr. 2013)

and multiple threads can exist in the same process[1].
Among the methods for processing jobs using threads,
the simplest one is to create a thread for processing a
job and remove it after it completes the job. This
method is called a thread per request method(TPR) since
it uses only one thread for handling a job. In case of
using TPR, as the number of jobs to be processed
increases, the time used for thread creation and removal
increases. Consequently, the time for processing jobs is
wasted and system throughput decreases. To alleviate
this problem, thread pool methods are frequently used
[2].

A thread is the smallest sequence of program
instructions that can be executed by the OS scheduler
and multiple threads can exist in the same process[1].
Among the methods for processing jobs using threads,
the simplest one is to create a thread for processing a
job and remove it after it completes the job. This
method is called a thread per request method(TPR) since
it uses only one thread for handling a job. In case of
using TPR, as the number of jobs to be processed
increases, the time used for thread creation and removal
increases. Consequently, the time for processing jobs is
wasted and system throughput decreases. To alleviate
this problem, thread pool methods are frequently used
[2].

Thread pool methods in general reduce the time
overheads due to thread creation and removal, not by
removing a thread that completes its job but by using it
for a next job to be processed. According to the way
the number of threads is managed, thread pool methods
can be divided into two categories: static and dynamic.
The methods in the former only use a fixed number of
threads, regardless of the amount of jobs. On the other
hand, those in the latter dynamically manage the number
of threads, depending on the amount of jobs. A
watermark pool method(WM) is a well-known one in
the latter category. It maintains a fixed number of
threads until it needs more threads due to more jobs.

It creates additional threads up to a specified number

when needed; they are of course removed after they
complete their jobs. In summary, WM shows better
performance compared to those in the static category, in
an environment where the amount of jobs vary
dynamically. ~ However, it still has a problem of
throughput decrease due to creation and removal of
additional threads, as in the case of TPP.

To alleviate this problem, this paper suggests a
history-based dynamic pool method(HisDyn). HisDyn,
by measuring mean job arrival times and mean job
processing times, estimates the range of needed threads.
According to experiments, HisDyn yields better
performance in terms of system throughput, with
reduced overheads due to thread creation and removal.
The remainder of this paper is organized as follows.
Section 2 describes related work. Section 3 presents
HisDyn.

Section 5 concludes the paper.

Section 4 presents experimental results.

. Related Work

Thread pool methods are usually used for systems,
such as web servers, with frequent job occurrences and
short job processing times[2]. By maintaining a fixed
number of threads for processing jobs, they reduce
overhead due to thread creation and removal so that they
can yield better system throughput compared to TPR.

Figure 1 shows a typical structure of thread pool
methods. In general, it consists of a task queue where
jobs to be processed reside, an /O thread that inserts
jobs to the task queue, and worker threads that process
jobs in the task queue. A thread pool method, when
started, creates a fixed number of threads in advance and
let them wait for job arrivals. Once a job arrives for
execution, the 1/0 thread inserts it to the task queue, and
one of the waiting worker threads processes that job.
Once completed, the worker thread goes back to the
waiting state and waits for next job arrival.

Thread pool methods can be either static[3] or

o
122
e
N,
™

>,
[~

Task Queue

Request Enqueus

—_— ——— /O Thread —.'l T4._:| |T2 Ik

4 2= A 3 A HEES S0V A sl2Ee] VY] T4 AYEs W 191

\ : Dequeus

T8 1. A E E g i X

Fig. 1. A typical structure of thread pool methods

dynamic[4]. In case of a static method, a fixed number
of threads are created when started and remain
thereafter. Therefore, these methods have no overhead
due to thread creation and removal. However, they can
suffer from throughput degradation when job arrivals
exceed that of threads in a thread pool. If reverse is the
case, system resources are wasted due to unused threads.

Dynamic pool methods control the number of threads
according to the changes in the amount of jobs. They,
however, have overhead problems due to thread creation
and removal, as in the case of TPR. Depending on the
way how the number of threads is managed, dynamic
pool methods can be in either watermark-based or
prediction-based methods.

A watermark-based method(WM)[5] manages the
number of threads within the lower limit and the upper
limit. It creates threads up to the lower limit when
started. It can create additional threads up to the upper
limit when needed and the additionally- created threads
are removed when they become unnecessary.

A prediction-based method[6] is one that uses
prediction for thread creations. It uses an exponential
moving average(EMA)[7] to identify the direction of the
trend in the number of needed threads. In case of a
growing trend, based on the rate of increase, it calculates
the number of threads needed in the future. Other
variations using different prediction methods for
prediction exist in this category[8,9,10].

Prediction-based methods are those proposed for fast

response times. Similar to WM, they create new threads

when no threads are available for new jobs. In case of
prediction failures (i.e., in case that newly-created
threads become unnecessary), the number of threads may
be unnecessarily increased. We do not discuss
prediction-based methods in this paper since the
proposed method (HisDyn) is one not for fast response
times but for preventing unnecessary removal of threads
(and hence for reducing the overhead due to thread
creation and removal). We do not discuss
prediction-based methods in more detail here since they
are beyond the scope of this paper. Interested readers

may refer to[11].

II. History-based Dynamic Method

WM performs better than those of static methods
since it manages the number of threads within a
specified range. However, it suffers from performance
degradation due to thread creation and removal
overheads. Another burden is that user must specify the
range of needed threads and continuous monitoring
should be done for range adjustment.

To alleviate these problems, this paper presents a
history-based dynamic thread pool method called
HisDyn.
threads by calculating a job waiting probability using a

HisDyn estimates the number of needed

mean job arrival time and a mean job processing time
it controls the range of needed threads by finding the

minimum number of needed threads where the job

192 S8 8)ets] =24 A 174 A 23 20139 49 (JKONI 17(2): 189-195, Apr. 2013)

waiting probability is less than a user-specified job
waiting probability. In other words, it reduces thread
creation and removal by estimating the number of
threads needed for processing jobs and using the number
as the lower limit for thread creation.

Figure 2 shows the thread pool structure of HisDyn.
It is similar to that of WM, but with two additional

components: a data manager and a range manager

i ‘ Request Watermark | Thread Min/Max
e ‘ Response Thread Pool |
Data
P) N .
&) Existing compaonents Ih'& _\‘ / Range \\
) Added components it :,-" Median \-\\ : ge_r.'_‘__,

T8 2. HisDyne| A8E & =
Fig. 2. Thread pool structure of HisDyn

The data manager accumulates job arrival intervals
and processing times. It calculates their mean values for
estimating the number of needed threads. The range
manager determines the (min, max) range of needed
threads by estimating the number of threads needed for
processing jobs. The max value is initially set by the
system user and the min value is obtained by using a
mean job arrival time between two consecutive jobs and
a mean job processing time. To reduce the overhead
due to finding the (min, max) range, the range manager
is executed only when it notices a symptom of changes
in the amount of jobs that is, the (min, max) range is
adjusted only when a thread is newly created due to
thread shortage and when existing threads are more than
needed. The job waiting time is set to (i * n) * t, where
i is the mean time between two consecutive job arrivals,
n is the number of existing threads, and t is a
user-specified parameter for controlling the job waiting
time.

The procedure to find the number of threads needed
for jobs is as follows:

1. Accumulate job arrival intervals and job processing

times
2. Obtain their mean values
3. Calculate job waiting probability
4. Estimate the min value for the (min, max)

range of needed threads

Job waiting probability is one that a new job arrives
when all the threads are being used for processing jobs
(i.e., there are no threads available for a new job). A
job waiting probability higher than the user-specified one
implies more threads need to be created. A reverse-case
probability implies some threads need to be removed.

Based on these implications, the number of needed
threads is determined to be the minimum number of
threads having the job waiting probability less than the
user-specified one.

The probability that a single thread processes a job at
any point in time is (c/i), where 1 is the mean job arrival
time and c is the mean job processing time. Since (c/i)
is the same as the one that a thread is processing an
immediate previous job, it is also the job waiting
probability for one thread. Expanding this to an
n-threads case, the job waiting probability becomes
{c/(i*n)}**n, where * mean ‘times’ and ** means ‘to
the power of’.

Figure 3 is a pseudo code for adjusting the (min,
max) thread range. This algorithm adjusts the range of
threads by using a mean job arrival time, a mean job
processing time, a user-specified job waiting probability,
and the number of existing threads. It performs a linear
search while modifying the lower limit(i.e. min value) of
the thread range. Since the maximum search length is
in between the minimum and the maximum numbers of
threads, it is not large. In addition, since the job waiting
probability decreases exponentially as the number of
threads increases, the number of search is usually shown
to be within a few search times (according to our
experiment, it is usually within 5 times). Therefore, a
simple linear search is more suitable than any other
algorithms in this case. In the code, CalcWaitProb

calculates job waiting probability and SetThreadRange

[>

A, AN AdE A R A QHEIES Eol7] A7 AR TNk FF AdEE Y 193

AdjustThreadRange(current no_threads, interval t, proc t, user spefied prob)

{

no_threads = current no_threads;

wait_prob = CalcWaitProb(interval t, proc t, no threads);

if (wait_prob> = user_spefied prob) {

while (wait_prob > user specified prob) {
if (no_threads >=max no_threads) break;

no_threads =no_threads+1;

wait_prob = CalcWaitProb(interval t, proc t, no_threads);

}
} else {

while (wait_prob < user specified prob) {

if (no_threads <= 2) break;
no_threads =no_threads-1;

wait_prob = CalcWaitProb(interval t, proc t, no_threads);

}

no_threads++;

SetThreadRange(no_threads, max no_threads);

J8 3. A= el = Lue|E

Fig. 3. Thread-range adjustment algorithm

sets the (min, max) thread range.

IV. Performance Evaluation

HisDyn aims to improve throughput by reducing the
overheads due to thread creation and removal, which is
realized by estimating and maintaining the number of
threads suitable for the amount of jobs. For performance
evaluation, we compare the number of created threads,
system throughput, and the average number of threads in
a thread pool with WM and those with HisDyn, where
system throughput is the number of jobs per unit time
(i.e. the total number of jobs divided by total execution
time) and the average number of threads in a thread pool
is calculated by averaging the numbers of threads
measured at every lms.

Experiment is made in a Linux computer system
equipped with Intel Core 2 (dual core) processor and a
2 GB memory board with 1000 job arrivals. To
maximize the processor utilization, the minimum number
of threads is set to 3 for WM[2] and the maximum
number of threads to 100 for both methods. The job
waiting probability is set to less than 1% and the job
waiting time to double the mean job arrival time. Using

the exponential distribution and the normal distribution

functions in C++ TRI library, a job request is made
with mean arrival rate 50 (i.e., a job arrives at every
0.02 sec on average) and the system load is increased at
intervals of 10% respectively.

As shown in Figure 4,while the number of created
threads increases with WM as load increases, it is
relatively constant with HisDyn. This is because the
number of needed threads is dynamically estimated and
maintained according to an amount of jobs with HisDyn.
The number of created threads is increased with WM as
load increases, while it is almost constant with HisDyn
sinceHisDyn controls the number of needed threads
according to the amount of jobs. Compared to WM,
HisDyn creates average 62% less threads.

As you can see in Figure 5, HisDyn maintains more
threads in a thread pool than WM except with very low
loads. Since it creates threads only when necessary,
threads are not kept unnecessarily. Compared to WM,
HisDyn maintains average 33% more threads. Figure 6
shows system throughput. With increasing loads, HisDyn
shows relatively-constant throughput while WM shows
reduced throughput. It’s because the number of thread
creation islower with HisDyn than that with WM, except
for low loads. Compared to WM, HisDyn shows
average 6% increase in terms of system throughput.

Figure 7 shows changes in the number of created threads

194 S8 8)ets] =24 A 174 A 23 20139 49 (JKONI 17(2): 189-195, Apr. 2013)

with increasing job arrival rates. HisDyn shows small
changes in the number of created threads with increasing
job arrivals, while WM does a hundred of changes with

increasing job arrivals.

HisDyn
soo ey ——
4001
300}

200

MNumber of threads created

0E— L B Y S S S

10 20 30 40 50 60 70 B0 90 100 110 120
Load (%)

O 4. AE 4N £

Fig. 4. Number of created threads

= =
|

MNumber of threads
in a thread poaol
=
3

3t
ol — L — . —1 T,]
0 20 30 40 50 60 70 80 90 100 10 120
Load (%)
8 5. ABE Eo| AYE £

Fig. 5. Number of threads in a thread pool

60T HisOyn

3 B0~

¥ 1] e —

(=) e

3

]

£ 40 - =
o 1 T 1 |]

0 20 30 40 50 60 70 80 90 100 110 120

Load {%)

a3 6. Me|H
Fig. 6. System throughput

T T T T
HisDyn, & 10 ——
HisDyn, . 25 —x— P
600 + HisDyn, A 50 —=—
HisDyn, & 75 —&—

HisDyn, & 100 —a— ,—"'.
500 WM. & 50 - o
WM. & 75 --eaee P «
WM, A 100 ~-v—

Mumber of thread created

10 20 30 40 50 &0 V0O 80 80 W0 M0 120
Load {%)
17 7. &Y 23 ulg Z7jl e AYE MY %
Fig. 7. Number of created threads with increasing
job arrival rates

V. Conclusion

Both WM and HisDyn are dynamic methods in the
sense that they dynamically change the number of
threads in a thread pool, depending on the amount of
jobs. One major difference is that while the lower limit
in the range of needed threads is user-specified at
system-start time and fixed thereafter with WM, it is
estimated and adjusted dynamically at run-time with
HisDyn.
repeatedly as load changes with WM, which results in

Creation of a thread frequently occurs

poor system throughput. On the other hand, HisDyn
yields better system throughput than WM, mainly by
virtue of the ability to maintain dynamically the lower
limit in the range of needed threads.

According to experiments with WM, HisDyn shows
average 33% increase in the number of threads kept and
average 62% reduction in the number of threads created,
which results in 6% increase in terms of system
throughput. Lastly, we plan to apply this method to a
web server such as Apache or Nginx in which thread
creation requests are expected to be very high so that we

can evaluate it in a more practical environment.

A, ARA 2EE A B A eHEEE Fol7] 93 JAEe VW] §4 2YEE W 195

19T A8t Yoz ske
AH] A YS who} SeiE A9(2011-0286)

Reference

[1] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating
System Concepts Essentials, First Edition Binder
Ready Version. John Wiley & Sons, 2011,

[2] Brian Goetz. Java theory and practice: Thread pools and work
queues. IBM Develop works,
http://www.ibm.com/developerworks/library/j-jtp0730, 2002.

[3] D. Xu and B. Bode. “Performance study and dynamic
optimization design for thread pool systems,” PhD
thesis, United States Department of Energy. Office
of Science, 2004.

[4] D.C. Schmidt, “Evaluating architectures for multi-threaded
object request broker.” Communications of the ACM, vol.
41, no. 10, pp. 54-60, 1998.

[5] Dynamic TAO Documentation,

http://choices.cs.uiuc.edu/2k/dynamicTAO/doc/

[6) DH. Kang, S. Han, SH. Yoo, and S. Park,
“Prediction-based dynamic thread pool scheme for
efficient resource usage,” In Computer and Information
Technology Workshops, CIT Workshops 2008, IEEE 8th
International Conference, pp. 159-164, 2008.

[7] DongHyun Kang, SeoHee Yoo, Sungyong Park. "A
Dynamic Thread Pool Scheme based on the Learning
for a Web Server," ITC-CSCC(International
Technical ~Conference on Circuits Systems
Computers and Communications), pp. 268-271, 2009.

[8] AutoRegressive,
http://local. wasp.uwa.edu.au/~pbourke/miscellaneous/ar/

[9] Chang-Hwan Lee, “Calculating Attribute Weights in
K-Nearest Neighbor Algorithms using Information
Theory,” KIISE JCSE, vol. 32, no. 9, pp. 920-926,
September 2005.

[10] Lee, K.L. and Pham, H.N. and Kim, H. and Youn, H.Y.
and Song, O. “A Novel Predictive and Self-Adaptive

Dynamic Thread Pool Management,” Parallel and
Distributed Processing with Applications (ISPA), 2011
IEEE 9th International Symposium, pp. 93-98, 2011.

[11] Jinsub Kim, “A History-based Thread Pool Method
for Reducing Overhead of Thread Creation and
Deletion,” Master's thesis for a degree in Hoseo
University, 2012.

2 A A (Sam-Kweon Oh)
19801 29 ~ 19843 79: AHAIAR
EAAT (A7)
19863 129 University of South
Florida(Z] 3+ H #8141 A}
19943 5¥: Queen's University(FEl
H3HkA}

199549 39 ~&A) . N AFE

Z & A (in-Sub Kim)

2011 39 ~ A A
it AHE BT
B Ak

20139 1€ ~ &A) : (HSDCmicr(A7)

4] 2ok : Parallel Processing,

Communication Protocol

