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요  약

작업의 실행요청이 빈번하고 실행시간이 짧은 환경에서, 스레드 생성 및 삭제로 인한 오버헤드를 줄여 작업

처리효율을 향상시키기 위해 스레드풀 방법이 자주 사용된다. 그중에서 워터마크 스레드풀 방법은 최대로 필요

한 스레드 수 이하의 스레드들을 유지함으로써 자원의 불필요한 사용을 줄인다. 그러나 사용가능한 스레드가

없을 경우에는 지정된 한도 내에서 스레드를 추가로 생성하여 작업들을 처리해야 하므로 스레드 생성으로 인

한 시스템 오버헤드가 증가하고 결국 성능 저하 현상이 발생할 수 있다. 본 논문은 이런 성능 저하를 줄이기

위한 방법으로써 히스토리 기반의 동적 스레드풀 방법을 제안한다. 이 방법은 작업처리에 필요한 스레드 수를

측정하고 유지함으로써 스레드 생성 및 삭제로 인한 오버헤드를 줄인다. 실험결과에 따르면, 제안방법은 워터

마크 스레드 풀 방식과 비교하여 보유 스레드 수는 평균 33% 증가하나 스레드 생성 수는 평균 62% 감소함으로

써 평균 6%의 시스템 처리량 증가를 보인다.
Abstract

In an environment with frequent job requests and short job processing times, thread pool methods are 
frequently used to increase throughput by reducing overheads due to thread creation and removal.  A watermark 
method normally reduces unnecessary uses of resources by keeping the number of threads less than those 
needed in the maximum.  In the absence of available threads, however, it processes jobs by creating additional 
threads up to a specified limit so that the system overhead increases due to creation of threads, which results 
in throughput degradation.  This paper presents a history-based dynamic method that alleviates throughput 
degradation.  By estimating and maintaining the number of threads needed for jobs, it reduces overheads due 
to thread creation and removal. According to experiments, compared to the watermark thread pool method, 
it shows average 33% increase in the number of threads kept and average 62% reduction in the number of 
threads created, which results in 6% increase in terms of system throughput.

Key words : History-based, Dynamic Thread Pool, Overhead, Throughput
키워드 : 히스토리-기반, 동적 스레드 풀, 오버헤드, 처리량

  * 호서대학교 뉴아이티공과대학 컴퓨터공학전공(College of NewIT Engineering(Department of Computer Engineering), Hoseo University)
  ‧  제1저자 (First Author) : 오삼권(Sam Kweon Oh, Tel : +82-41-540-5711, email : ohsk@hoseo.edu)
  ‧  접수일자 : 2013년 2월 18일 ‧  심사(수정)일자 : 2013년 2월 18일 (수정일자 : 2013년 4월 16일)  ‧  게재일자 : 2013년 4월 30일
  http://dx.doi.org/10.12673/jkoni.2013.17.2.189

I. Introduction A thread is the smallest sequence of program 
instructions that can be executed by the OS scheduler 
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and multiple threads can exist in the same process[1]. 
Among the methods for processing jobs using threads, 
the simplest one is to create a thread for processing a 
job and remove it after it completes the job.  This 
method is called a thread per request method(TPR) since 
it uses only one thread for handling a job.  In case of 
using TPR, as the number of jobs to be processed 
increases, the time used for thread creation and removal 
increases.  Consequently, the time for processing jobs is 
wasted and system throughput decreases. To alleviate 
this problem, thread pool methods are frequently used 
[2].

A thread is the smallest sequence of program 
instructions that can be executed by the OS scheduler 
and multiple threads can exist in the same process[1].  
Among the methods for processing jobs using threads, 
the simplest one is to create a thread for processing a 
job and remove it after it completes the job.  This 
method is called a thread per request method(TPR) since 
it uses only one thread for handling a job.  In case of 
using TPR, as the number of jobs to be processed 
increases, the time used for thread creation and removal 
increases.  Consequently, the time for processing jobs is 
wasted and system throughput decreases.  To alleviate 
this problem, thread pool methods are frequently used 
[2].

Thread pool methods in general reduce the time 
overheads due to thread creation and removal, not by 
removing a thread that completes its job but by using it 
for a next job to be processed.  According to the way 
the number of threads is managed, thread pool methods 
can be divided into two categories: static and dynamic.  
The methods in the former only use a fixed number of 
threads, regardless of the amount of jobs.  On the other 
hand, those in the latter dynamically manage the number 
of threads, depending on the amount of jobs.  A 
watermark pool method(WM) is a well-known one in 
the latter category.  It maintains a fixed number of 
threads until it needs more threads due to more jobs.  
It creates additional threads up to a specified number 

when needed; they are of course removed after they 
complete their jobs.  In summary, WM shows better 
performance compared to those in the static category, in 
an environment where the amount of jobs vary 
dynamically.  However, it still has a problem of 
throughput decrease due to creation and removal of 
additional threads, as in the case of TPP.

To alleviate this problem, this paper suggests a 
history-based dynamic pool method(HisDyn).  HisDyn, 
by measuring mean job arrival times and mean job 
processing times, estimates the range of needed threads.  
According to experiments, HisDyn yields better 
performance in terms of system throughput, with 
reduced overheads due to thread creation and removal.  
The remainder of this paper is organized as follows.  
Section 2 describes related work.  Section 3 presents 
HisDyn.  Section 4 presents experimental results.  
Section 5 concludes the paper.

Ⅱ. Related Work

Thread pool methods are usually used for systems, 
such as web servers, with frequent job occurrences and 
short job processing times[2].  By maintaining a fixed 
number of threads for processing jobs, they reduce 
overhead due to thread creation and removal so that they 
can yield better system throughput compared to TPR.

Figure 1 shows a typical structure of thread pool 
methods.  In general, it consists of a task queue where 
jobs to be processed reside, an I/O thread that inserts 
jobs to the task queue, and worker threads that process 
jobs in the task queue.  A thread pool method, when 
started, creates a fixed number of threads in advance and 
let them wait for job arrivals.  Once a job arrives for 
execution, the I/O thread inserts it to the task queue, and 
one of the waiting worker threads processes that job.  
Once completed, the worker thread goes back to the 
waiting state and waits for next job arrival.

Thread pool methods can be either static[3] or 
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그림 1. 스레드 풀 방식의 일반적 구조

Fig. 1. A typical structure of thread pool methods

dynamic[4].  In case of a static method, a fixed number 
of threads are created when started and remain 
thereafter.  Therefore, these methods have no overhead 
due to thread creation and removal.  However, they can 
suffer from throughput degradation when job arrivals 
exceed that of threads in a thread pool.  If reverse is the 
case, system resources are wasted due to unused threads.

Dynamic pool methods control the number of threads 
according to the changes in the amount of jobs.  They, 
however, have overhead problems due to thread creation 
and removal, as in the case of TPR.  Depending on the 
way how the number of threads is managed, dynamic 
pool methods can be in either watermark-based or 
prediction-based methods.

A watermark-based method(WM)[5] manages the 
number of threads within the lower limit and the upper 
limit.  It creates threads up to the lower limit when 
started.  It can create additional threads up to the upper 
limit when needed and the additionally- created threads 
are removed when they become unnecessary.

A prediction-based method[6] is one that uses 
prediction for thread creations.  It uses an exponential 
moving average(EMA)[7] to identify the direction of the 
trend in the number of needed threads.  In case of a 
growing trend, based on the rate of increase, it calculates 
the number of threads needed in the future.  Other 
variations using different prediction methods for 
prediction exist in this category[8,9,10].

Prediction-based methods are those proposed for fast 
response times.  Similar to WM, they create new threads 

when no threads are available for new jobs. In case of 
prediction failures (i.e., in case that newly-created 
threads become unnecessary), the number of threads may 
be unnecessarily increased.  We do not discuss 
prediction-based methods in this paper since the 
proposed method (HisDyn) is one not for fast response 
times but for preventing unnecessary removal of threads 
(and hence for reducing the overhead due to thread 
creation and removal).  We do not discuss 
prediction-based methods in more detail here since they 
are beyond the scope of this paper.  Interested readers 
may refer to[11].

Ⅲ. History-based Dynamic Method

WM performs better than those of static methods 
since it manages the number of threads within a 
specified range.  However, it suffers from performance 
degradation due to thread creation and removal 
overheads.  Another burden is that user must specify the 
range of needed threads and continuous monitoring 
should be done for range adjustment.

To alleviate these problems, this paper presents a 
history-based dynamic thread pool method called 
HisDyn.  HisDyn estimates the number of needed 
threads by calculating a job waiting probability using a 
mean job arrival time and a mean job processing time 
it controls the range of needed threads by finding the 
minimum number of needed threads where the job 
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waiting probability is less than a user-specified job 
waiting probability.  In other words, it reduces thread 
creation and removal by estimating the number of 
threads needed for processing jobs and using the number 
as the lower limit for thread creation.

Figure 2 shows the thread pool structure of HisDyn.  
It is similar to that of WM, but with two additional 
components: a data manager and a range manager 

그림 2. HisDyn의 스레드 풀 구조

Fig. 2. Thread pool structure of HisDyn

The data manager accumulates job arrival intervals 
and processing times.  It calculates their mean values for 
estimating the number of needed threads.  The range 
manager determines the (min, max) range of needed 
threads by estimating the number of threads needed for 
processing jobs.  The max value is initially set by the 
system user and the min value is obtained by using a 
mean job arrival time between two consecutive jobs and 
a mean job processing time.  To reduce the overhead 
due to finding the (min, max) range, the range manager 
is executed only when it notices a symptom of changes 
in the amount of jobs that is, the (min, max) range is 
adjusted only when a thread is newly created due to 
thread shortage and when existing threads are more than 
needed.  The job waiting time is set to (i * n) * t, where 
i is the mean time between two consecutive job arrivals, 
n is the number of existing threads, and t is a 
user-specified parameter for controlling the job waiting 
time.

The procedure to find the number of threads needed 
for jobs is as follows:

1. Accumulate job arrival intervals and job processing 

times
2. Obtain their mean values
3. Calculate job waiting probability
4. Estimate the min value for the (min, max) 

range of needed threads
Job waiting probability is one that a new job arrives 

when all the threads are being used for processing jobs 
(i.e., there are no threads available for a new job).  A 
job waiting probability higher than the user-specified one 
implies more threads need to be created.  A reverse-case 
probability implies some threads need to be removed.  
 Based on these implications, the number of needed 
threads is determined to be the minimum number of 
threads having the job waiting probability less than the 
user-specified one.

The probability that a single thread processes a job at 
any point in time is (c/i), where i is the mean job arrival 
time and c is the mean job processing time.  Since (c/i) 
is the same as the one that a thread is processing an 
immediate previous job, it is also the job waiting 
probability for one thread.  Expanding this to an 
n-threads case, the job waiting probability becomes 
{c/(i*n)}**n, where * mean ‘times’ and ** means ‘to 
the power of’.

Figure 3 is a pseudo code for adjusting the (min, 
max) thread range.  This algorithm adjusts the range of 
threads by using a mean job arrival time, a mean job 
processing time, a user-specified job waiting probability, 
and the number of existing threads.  It performs a linear 
search while modifying the lower limit(i.e. min value) of 
the thread range.  Since the maximum search length is 
in between the minimum and the maximum numbers of 
threads, it is not large.  In addition, since the job waiting 
probability decreases exponentially as the number of 
threads increases, the number of search is usually shown 
to be within a few search times (according to our 
experiment, it is usually within 5 times).  Therefore, a 
simple linear search is more suitable than any other 
algorithms in this case.  In the code, CalcWaitProb 
calculates job waiting probability and SetThreadRange 
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그림 3. 스레드 범위 조절 알고리즘

Fig. 3.  Thread-range adjustment algorithm

sets the (min, max) thread range.

Ⅳ. Performance Evaluation

HisDyn aims to improve throughput by reducing the 
overheads due to thread creation and removal, which is 
realized by estimating and maintaining the number of 
threads suitable for the amount of jobs. For performance 
evaluation, we compare the number of created threads, 
system throughput, and the average number of threads in 
a thread pool with WM and those with HisDyn, where 
system throughput is the number of jobs per unit time 
(i.e. the total number of jobs divided by total execution 
time) and the average number of threads in a thread pool 
is calculated by averaging the numbers of threads 
measured at every 1ms. 

Experiment is made in a Linux computer system 
equipped with Intel Core 2 (dual core) processor and a 
2 GB memory board with 1000 job arrivals.  To 
maximize the processor utilization, the minimum number 
of threads is set to 3 for WM[2] and the maximum 
number of threads to 100 for both methods.  The job 
waiting probability is set to less than 1% and the job 
waiting time to double the mean job arrival time. Using 
the exponential distribution and the normal distribution 

functions in C++ TR1 library, a job request is made 
with mean arrival rate 50 (i.e., a job arrives at every 
0.02 sec on average) and the system load is increased at 
intervals of 10% respectively.

As shown in Figure 4,while the number of created 
threads increases with WM as load increases, it is 
relatively constant with HisDyn. This is because the 
number of needed threads is dynamically estimated and 
maintained according to an amount of jobs with HisDyn. 
The number of created threads is increased with WM as 
load increases, while it is almost constant with HisDyn 
sinceHisDyn controls the number of needed threads 
according to the amount of jobs. Compared to WM, 
HisDyn creates average 62% less threads.

As you can see in Figure 5, HisDyn maintains more 
threads in a thread pool than WM except with very low 
loads.  Since it creates threads only when necessary, 
threads are not kept unnecessarily.  Compared to WM, 
HisDyn maintains average 33% more threads.  Figure 6 
shows system throughput. With increasing loads, HisDyn 
shows relatively-constant throughput while WM shows 
reduced throughput. It’s because the number of thread 
creation islower with HisDyn than that with WM, except 
for low loads.  Compared to WM, HisDyn shows 
average 6% increase in terms of system throughput.  
Figure 7 shows changes in the number of created threads 
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그림 4. 스레드 생성 수

Fig. 4. Number of created threads

with increasing job arrival rates. HisDyn shows small 
changes in the number of created threads with increasing 
job arrivals, while WM does a hundred of changes with 
increasing job arrivals.

그림 5. 스레드 풀의 스레드 수

Fig. 5. Number of threads in a thread pool

그림 6. 처리량

Fig. 6. System throughput

그림 7. 작업 요청 비율 증가에 따른 스레드 생성 수

Fig. 7. Number of created threads with increasing 

job arrival rates

Ⅴ. Conclusion

Both WM and HisDyn are dynamic methods in the 
sense that they dynamically change the number of 
threads in a thread pool, depending on the amount of 
jobs.  One major difference is that while the lower limit 
in the range of needed threads is user-specified at 
system-start time and fixed thereafter with WM, it is 
estimated and adjusted dynamically at run-time with 
HisDyn.  Creation of a thread frequently occurs 
repeatedly as load changes with WM, which results in 
poor system throughput.  On the other hand, HisDyn 
yields better system throughput than WM, mainly by 
virtue of the ability to maintain dynamically the lower 
limit in the range of needed threads.  

According to experiments with WM, HisDyn shows 
average 33% increase in the number of threads kept and 
average 62% reduction in the number of threads created, 
which results in 6% increase in terms of system 
throughput.  Lastly, we plan to apply this method to a 
web server such as Apache or Nginx in which thread 
creation requests are expected to be very high so that we 
can evaluate it in a more practical environment.
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