DOI QR코드

DOI QR Code

소셜 네트워크의 태그와 시간 정보를 반영한 추천 알고리즘

A recommendation algorithm which reflects tag and time information of social network

  • 투고 : 2012.10.16
  • 심사 : 2013.03.08
  • 발행 : 2013.04.30

초록

최근 다수의 소셜 네트워크가 빠르게 확산되었다. 그 중에서도 소셜 북마킹 시스템은 가장 널리 사용되는 것 중 하나이다. 소셜 북마킹 시스템은 사용자들이 온라인 자원에 태그를 부여해서 공유하고 관리할 수 있는 환경을 제공한다. 소셜 북마킹 시스템에서는 품질향상을 위해 태그와 시간 정보를 반영하여 개인에 특화된 추천을 할 수 있다. 본 논문에서는 가중치와 유사도 측정 과정에서 태그와 시간을 반영한 추천 시스템을 제안하였다. 또한 제안 방법론을 실제 데이터에 적용하였고, 실험결과 태그와 시간 정보를 함께 반영하였을 때 추천 성능이 향상됨을 확인하였다.

In recent years, the number of social network system has grown rapidly. Among them, social bookmarking system(SBS) is one of the most popular systems. SBS provides network platform which users can share and manage various types of online resources by using tags. In SBS, it can be possible to reflect tag and time in order to enhance the quality of personalized recommendation. In this paper, we proposed recommender system which reflect tag and time at weight generation and similarity calculation. Also we adapted proposed method to real dataset and the result of experiment showed that the our method offers better performance when such information is integrated.

키워드

참고문헌

  1. Choi, J. Y., Rosen, J., Maini, S., Pierce, M. E. and Fox, G. C., "Collective collaborative tagging system", Grid computing environment workshop, 2008, pp. 1-7.
  2. Yu, H. L. and Song, I. G., "Social network evolution according web service type change", Journal of Korean Society for Internet Information, Vol 11, No. 3, 2010, pp. 52-62.
  3. Golder, S. A. and Huberman, B. A., "Usage patterns of collaborative tagging system", Journal of Information Science, Vol. 32, No. 2, 2006, pp. 198-208. https://doi.org/10.1177/0165551506062337
  4. Jo, H., Cheoh, J. Y. and Kim, S. H., "A Study About User Pattern of Social Bookmarking System", Journal of Korean Society for Internet Information, Vol. 12 No. 5, 2011a, pp. 29-37.
  5. Albert, R., Jeong, H. and Barabasi, A.-L., "Diameter of the World-Wide Web", Nature, Vol. 401, No. 1999, pp. 130-131. https://doi.org/10.1038/43601
  6. Adamic, L. A., "The Small World Web", 99 Proceedings of the Third European Conference on Research and Advanced Technology for Digital Libraries, Vol. 1696, pp. 443-452.
  7. Dodds, P. S., Muhamad, R. and WatTiVS, D. J., "An experimental study of search in global social networks", Science, Vol. 301, No. 2003, pp. 827-829. https://doi.org/10.1126/science.1081058
  8. Crossley, N., "Review article: the new social physics and the science of small world networks", The Sociological Review, Vol. 53, No. 2005, pp. 351-359. https://doi.org/10.1111/j.1467-954X.2005.00518_1.x
  9. Albert, R. and Barabasi, A.-L., "Topology of Evolving Networks: Local Events and Universality", Physical Review Letters, Vol. 85, No. 24, 2000, pp. 5234-5237. https://doi.org/10.1103/PhysRevLett.85.5234
  10. Newman, M. E. J., "The structure and function of complex networks", SIAM Review, Vol. 45, No. 2003, pp. 167-256. https://doi.org/10.1137/S003614450342480
  11. Newman, M. E. J., "Fast algorithm for detecting community structure in networks", Physical Review E, Vol. 69, No. 6, 2004, pp. 1-5.
  12. Newman, M. E. J., "Power laws, pareto distributions and zipf's law", Contemporary Physics, Vol. 46, No. 5, 2005, pp. 323-351. https://doi.org/10.1080/00107510500052444
  13. McDonald, D. W., "Recommending collaboration with social networks: a comparative evaluation", CHI '03 Proceedings of the SIGCHI conference on Human factors in computing systems, 2003, pp. 593-600.
  14. Palau, J., Montaner, M., Lopez, B. and Rosa, J. L. d. l., "Collaboration analysis in recommender systems using social networks", Cooperative Information Agents VIII, Vol. 3191, No. 2004, pp. 137-151. https://doi.org/10.1007/978-3-540-30104-2_11
  15. Lam, C., "SNACK: incorporating social network information in automated collaborative filtering", The 5th ACM Conference on Electronic Commerce, 2004, pp. 254-255.
  16. Lee, S., Park, S., Lee, M. and Hwang, D., "A Study on Construction of Tag-based Social Network for Content Recommendation", Proceedings of Korean Multimedia Society, Vol. 12 No. 1, 2009, pp. 152-155.
  17. Eom, T. Y., Kim, W. and Park, S., "Personalized Bookmark Recommendation System Using Tag Network", The Journal of Society for e-Business Studies, Vol. 15, No. 4, 2010, pp. 181-195.
  18. Jo, H., Cheoh, J. Y. and Kim, S. H., "A Study on Information Retrieval of On-line Tagging System", Journal of Korean Institute of Information Technology, Vol. 9 No. 10, 2011b, pp. 215-221.
  19. Sarwar, B., Karypis, G., Konstan, J. and Riedl, J., "Analysis of recommendation algorithms for E-commerce", The Second ACM Conference on Electronic Commerce, 2000, pp. 158-167.
  20. Breese, J. S., Heckerman, D. and Kadie, C., "Empirical analysis of predictive algorithms for collaborative filtering", The 14th Conference on Uncertainty in Artificial Intelligence, 1998, pp. 43-52.
  21. Kim, K., "A Hybrid Collaborative Filtering Algorithm for Personalized Recommendation and its Application to the Internet Electronic Commerce", The Journal of Internet Electronic Commerce Research, Vol. 8, No. 4, 2008, pp. 1-20. https://doi.org/10.1007/s10660-008-9015-z
  22. Kim, Y., -s. and Kang, J., -g., "Development of a Process for Recommender System Applications and a Framework of an Analysis of Personalizability", The Journal of Internet Electronic Commerce Research, Vol. 9, No. 3, 2009, pp. 213-241.
  23. Kim, J., Ahn, B. and Jung D., "A Recommender System using Mixed Filtering for Health Products", The Journal of Internet Electronic Commerce Research, Vol 12, No. 2, 2012, pp. 109-124.
  24. Adomavicius, G., R. Sankaranarayanan, S. Sen and Tuzhilin, A., "Incorporating contextual information in recommender systems using a multidimensional approach", ACM Transactions on Information Systems Vol. 23, 2005, pp. 103-145. https://doi.org/10.1145/1055709.1055714
  25. Chen, A., "Context-Aware Collaborative Filtering System: Predicting the User's Preferences in Ubiquitous Computing Environment", Lecture Notes in Computer Science, Vol. 3479, No. 2005, pp. 244-253.
  26. Lee, D. and Kwon, J., "Recommendation of Subscribed Tag Using Folksonomy Mashup", Korean Institute of Information Technology Proceeding, 2009, pp. 544-547.
  27. Kim, H. N., Ji, A. T., Ha, I. and Jo, G. S., "Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation", Electronic Commerce Research and Applications, Vol. 9, No. 1, 2010, pp. 73-83. https://doi.org/10.1016/j.elerap.2009.08.004
  28. Shang, M.-S., Lu, L., Zhang, Y.-C. and Zhou, T., "Empirical analysis of web-based user-object bipartite networks", Europhysics Letters, Vol. 90, 2010, 48006. https://doi.org/10.1209/0295-5075/90/48006
  29. Kim, H., Lee, K. and Kim, H., "Tag Recommendation Algorithms in Tagging System", Journal of Information Science Society: Computing reality and letter, Vol. 16권, No. 9, 2010, pp. 927-932.
  30. Aggarwal, C. C., Han, J., J. Wang and Yu, P. S. "A framework for projected clustering of high dimensional data streams", Proceedings of the Thirtieth international conference on Very large data bases, Toronto, Canada. 2004.
  31. http://www.citeulike.org/faq/data.adp
  32. Herlocker, J. L., Konstan, J. A., Terveen, L. G. and Riedl, J. T., "Evaluating collaborative filtering recommender systems", ACM Transactions on Information Systems, Vol. 22, No. 1, 2004, pp. 5-53. https://doi.org/10.1145/963770.963772

피인용 문헌

  1. User Oriented clustering of news articles using Tweets Heterogeneous Information Network vol.14, pp.6, 2013, https://doi.org/10.7472/jksii.2013.14.6.85
  2. 온라인 패션쇼핑몰의 개인 상품 추천서비스가 인지적 태도와 감정적 애착을 통해 서비스 사용행동에 미치는 영향 vol.23, pp.5, 2013, https://doi.org/10.5805/sfti.2021.23.5.586