DOI QR코드

DOI QR Code

영산강 하구의 2011년 하계 홍수시 퇴적물이동 수치모의

Numerical Modeling of Sediment Transport during the 2011 Summer Flood in the Youngsan River Estuary, Korea

  • 투고 : 2013.03.25
  • 심사 : 2012.04.12
  • 발행 : 2013.04.30

초록

영산강 하구는 하구둑 및 방조제 건설등의 개발 사업으로 해수유동 체계에 변화가 발생하였으며, 인위적인 하구둑 운영에 의해서 담수 방류가 조절되어 자연적인 하구와는 다른 하구순환 형태를 나타내며, 하천 기원 퇴적물의 유입이 제한적이다. 하구둑 방류가 빈번한 하계의 하구 퇴적물 이동양상과 수지를 파악하기 위하여 3차원 수치모델인 EFDC를 적용하였다. 외력 및 육상 유입 조건을 실시간으로 입력하고, 연구지역의 퇴적물 입도특성을 바탕으로 모래, 실트, 점토의 다중 입경을 적용하여 모델링을 수행하였다. 관측 조석, 조류와 부유사 농도에 대하여 보정 검정된 모델링 결과에 의하면, 2011년 8월에 부유 퇴적물은 표층에서 외해방향으로 이동하지만 중 저층에서는 하구 내측으로 이동한다. 하구둑 방류에 기인한 하구순환에 의해 실트 크기 입자에 의한 퇴적이 우세하게 나타나며, 점토 크기 입자는 대부분 하구 내에서 순환을 반복하는 양상을 보였다.

The hydrodynamics in the Youngsan River Estuary has changed due to coastal developments such as the estuary dam and two tidal barriers. As the freshwater discharge is artificially controlled, the circulation pattern is different from those of natural estuaries and the river-born sediment supply is restricted. 3D numerical modeling system EFDC was applied to investigate the sediment transport pattern and budget in summer with river floods. The real-time driving forces and the fluvial sediment discharges from the watershed modeling were assigned for the simulation period. The size classes of sand, silt and clay were adopted based on the grain-size distribution of bottom sediments. The modeling results were calibrated and validated with the observed tides, tidal currents and suspended sediment concentrations. The suspended sediments are transported to the offshore at surface layer, whereas upstream toward the dam at mid- and bottom layers in August 2011. The characteristic estuarine circulation induced by the freshwater discharge from the dam, causes the deposition of silt-sized sediments on the whole and the sustained suspension of clay-sized sediments.

키워드

참고문헌

  1. 강주환 (1996). 하구언 및 방조제 건설에 따른 목포해역의 환경변화. 대한토목학회논문집, 16(II-6), 611-619.
  2. 강주환, 문승록 (2000). 조석환경변화를 고려한 목포항의 고극조위 산정. 한국해안.해양공학회지 12(4), 203-209.
  3. 강주환, 문승록 (2001). 천해조가 발달된 하구에서의 조석과 전파특성. 한국해안.해양공학회지 14(3), 201-208.
  4. 강주환, 문승록, 박선중 (2005a). 조석확폭에 수반되는 조간대 영역 확대의 영향성. 17(1), 47-54.
  5. 강주환, 문승록, 박형섭 (2002a). 천해조가 발달된 하구에서의 소류사이동 특성. 대한토목학회논문집, 22(4-B), 531-538.
  6. 강주환, 문승록, 안성모 (2002b). 천해조 및 조간대가 발달된 하구에서의 부유사이동 특성. 한국해안.해양공학회지 14(3), 201-208.
  7. 강주환, 문승록, 오남선 (2005b). 서남해안의 해수면 상승. 대한토목학회논문집, 25(2B), 151-157.
  8. 강주환, 송재준, 오남선 (1998). 낙조우세와 관련된 목포해역의 조류특성 분석. 대한토목학회논문집, 18(II-2), 185-193.
  9. 건설교통부, 익산지방국토관리청 (1999). 영산강 하천정비기본계획(보안).
  10. 고영구 (1992). 한국 서남해안의 목포-홍도 간에 발달하는 생물기원 퇴적물에 관한 연구. 한국지구과학회지, 13(4), 510-528.
  11. 국립해양조사원 (2010). 목포 부근 연안해역조사 결과보고서.
  12. 국립해양조사원 (2011). 2011년 서해남부 연안해역조사 결과보고서.
  13. 국토해양부 (2011). 보관리규정(국토해양부훈령, 2011.10.31 제정, 2012. 1.1 시행).
  14. 국토해양부, 한국해양과학기술진흥원 (2012a). 하구역 종합관리 시스템 개발연구: 영산강 하구역을 중심으로, 2011년 연차실적 계획서.
  15. 국토해양부, 한국해양과학기술진흥원 (2012b). 하구역 종합관리시스템 개발연구: 영산강 하구역을 중심으로, II. 모니터링(유동퇴적/수질/생태), 2012년 연차실적 계획서 (세부연구내용).
  16. 국토해양부, 한국해양과학기술진흥원 (2012c). 하구역 종합관리 시스템 개발연구: 영산강 하구역을 중심으로, III. 모델-IV. 정보, 2012년 연차실적 계획서 (세부연구내용).
  17. 김동주, 김주용, 고영구 (1994). 목포부근 해역의 표층퇴적물에 관한 퇴적환경학적인 연구. 한국지구과학회지, 15(1), 60-71.
  18. 김영길 (2007). 영산강 하구의 퇴적물 특성과 수심변화. 목포대학교 석사학위논문, 78 pp.
  19. 박래환, 조양기, 조철, 선연종, 박경양 (2001). 2000년 여름 영산강 하구의 해수 특성과 순환. 한국해양학회지:바다, 6(4), 218-224.
  20. 박효봉, 강기룡, 이관홍, 신현정 (2012). 2010년 여름 담수방류에 의한 영산강 하구의 염분 및 수온 분포 변화. 한국해양학회지:바다, 17(3), 149-159. https://doi.org/10.7850/jkso.2012.17.3.139
  21. 서남조선산업개발(주) (2010). 신안조선타운 일반산업단지 조성사업 환경영향평가서.
  22. 신용식, 윤보배 (2011). 하구언 건설 전,후의 영산강 하구 식물 플랑크톤 군집 및 변화, 한국환경생물학회지, 29(3), 212-224.
  23. 오강호 (2007). 영산강 수계 퇴적환경과 지형체계. 한국지형학회지, 14(3), 91-102.
  24. 유환수, 류상옥, 유경아 (1996). 한국 남서 연안 사질 퇴적물의 퇴적상. 한국지구과학회지, 17(2), 213-223.
  25. 이관수, 이경훈, 이삼노, 박진형 (1995). 하구언 방류가 만내의 해수유동에 미치는 영향. 한국수자원학회 1995년도 학술발표회 논문집, 518-526.
  26. 이중우, 신승호 (1991). 영산강지구 대단위간척지 개발로 인한 조석변화에 대한 수치 실험. 한국항만학회지, 5(2). 65-75.
  27. 정대득, 이중우, 국승기 (1999). 영산강 하구둑 및 염암-금호방조제 방류에 의한 목포항 주변 수역의 유동변화 및 선박 운용에 미치는 영향에 관한 연구. 한국항만학회지, 13(1), 133-146.
  28. 정명선, 정대득, 신승호, 이중우 (1997). 목포해역 개발에 따른 항내 조석변화. 한국항만학회지, 11(1), 113-120.
  29. 정태성, 김태식, 정동국 (2006). 목포해역 점착성 퇴적물의 수송에 관한 수치모의. 한국해양환경공학회지, 9(1), 36-44.
  30. 정태성, 최종화 (2010). 목포해역 낙조류 우세현상의 수치모의. 한국해안.해양공학회논문집, 22(56), 333-343.
  31. (주)지오시스템리서치 (2003). 목포시 관대 국대대체우회도로(고하죽교) 건설공사(T/K) 기본설계 해양조사 및 수치모형실험 보고서.
  32. (주)지오시스템리서치 (2011). 수질예보를 위한 3차원 동적 수리 수질모델 개선 연구 최종보고서. 환경부, 국립환경과학원 수질통합관리센터.
  33. 최병호 (1984). 영산강하구의 방조제건설에 따른 조위변화. 대한토목학회논문집, 4(2), 113-124.
  34. 최종화 (2012). EFDC 모형을 이용한 목포해역 점착성 퇴적물 이동 모의. 한남대학교 석사학위논문, 76 pp.
  35. 최종화, 정태성 (2012). 목포해역의 점착성 퇴적물 이동에 관한 2차원 수치모의. 한국해안.해양공학회지 24(4), 287-294. https://doi.org/10.9765/KSCOE.2012.24.4.287
  36. Ariathurai, R. and Krone, R.B. (1976). Finite element model for cohesive sediment transport, Journal of the Hydraulics Division, ASCE, pp. 323-338.
  37. Bagnold, R.A. (1956). The flow of cohesionless grains in fluids. Phil. Trans. Roy. Soc. Lond., Series A, Vol 249, No. 964, 235-297. https://doi.org/10.1098/rsta.1956.0020
  38. Bagnold, R.A. (1966). An Approach to the Sediment Transport Problem from General Physics Geological Survey Prof. Paper 422-I, Washington.
  39. Bicknell, B.R., Imhoff, J.C., Kittle, J.L., Jr., Donigian, A.S., Jr. and Johanson, R.C. (1997). Hydrological Simulation Program-Fortran: User's manual for version 11. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Ga., EPA/600/R-97/080, 755.
  40. Bijker, E.W. (1967). Some Considerations about Scales for Coastal Models with Movable Bed. Dissertation, Delft University of Technology, Delft, The Netherlands.
  41. Bijker, E.W. (1986). Coastal Engineering, Vol. II. Lecture Notes, Delft Univ. Technology, Delft, The Netherlands.
  42. Booij, N., Ris, R.C. and Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research, 104(C4), 7649-7666. https://doi.org/10.1029/98JC02622
  43. Bowden, K.F. (1967). Circulation and diffusion. In:G.H.Lauff(ed.). Estuaries. Am. Assoc. Adv. Sci., pp. 15-36.
  44. Byun, D.S. and Wang, X.H. (2005). The effect of sediment stratification on tidal dynamics and sediment transport patterns. Journal of Geophysical Research, 110(C03011), doi:10.1029/2004JC002459.
  45. Byun, D.S., Wang, X.H. and Holloway, P.E. (2004). Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo Coastal Zone, Korea. Estuarine, Coastal and Shelf Science, 59, 185-196. https://doi.org/10.1016/j.ecss.2003.08.007
  46. Byun, D.S., Wang, X.H., Zavatarelli, M. and Cho, Y.K. (2007). Effects of resuspended sediments and vertical mixing on phytoplankton spring bloom dynamics in a tidal estuarine embayment. Journal of Marine Systems, 67, 102-118. https://doi.org/10.1016/j.jmarsys.2006.10.003
  47. Cho, Y.K., Lee, K.S. and Park, K.Y. (2009). Year-to-year Variability of the Vertical Temperature Structure in the Youngsan Estuary. Ocean and Polar Research, 31(3), 239-246. https://doi.org/10.4217/OPR.2009.31.3.239
  48. Cho, Y.K., Park, L.H., Cho, C., Lee, I.T., Park, K.Y. and Oh, C.W. (2004). Multi-layer structure in the Youngsan Estuary, Korea. Estuarine, Coastal and Shelf Science, 61, 325-329. https://doi.org/10.1016/j.ecss.2004.06.003
  49. Dyer, K.R. (1973). Estuaries: A physical introduction. John Wiley, 140 pp.
  50. Edinger, J.E., Brady, D.K. and Geyer, J.C. (1974). Heat exchange and transport in the environment, Publication No. 74-049-00-3, Electric Power Research Inst., Palo Alto, Calif.
  51. Engelund, F. and Hansen, E. (1967). A Monograph on sediment transport in alluvial streams. Teknisk Forlag, Copenhagen, Denmark, 65 pp.
  52. Ganju, N.K. and Schoellhamer, D.H. (2009). Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution. Cont. Shelf Res., 29, 148-158. https://doi.org/10.1016/j.csr.2007.09.005
  53. Garcia, M. and Parker, G. (1991). Entrainment of bed sediment into suspension. J. Hyd. Engrg., 117, 414-435. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:4(414)
  54. Hamrick, J.M. (1992). A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects. The College of William and Mary, Virginia Institute of Marine Science. Special report 317, Williamsbug, VA. pp. 1-40.
  55. Hamrick, J.M. (1994). Application of the EFDC, environmental fluid dynamic computer code to SFWMD Water Conservation Area 2A. A report to South Florida Water Management District. JMH-SFWMD-94-01, J.M.Hamrick, Consulting Engineer, Williamsburg, VA.
  56. Hamrick, J.M. and Moustafa, M.Z. (1996). Development of the Everglades wetlands hydrodynamic model: 1. Model formulation and physical process representation. In review.
  57. Hwang, K.-N. and Mehta, A.J. (1989). Fine sediment erodibility in Lake Okeechobee. Coastal and Oceanographic Engineering Dept., Unversity of Florida, Report UFL/COEL-89/019, Gainesville, FL.
  58. James, S.C., Shrestha, P.L. and Roberts, J.D. (2006). Modeling noncohesive sediment transport using multiple sediment size classes. J. Coast. Res, 22(5), 1125-1132.
  59. Kang, J.W. (1999). Changes in Tidal characteristics as a Result of the Construction of Sea-dike/Sea-walls in the Mokpo Coastal Zone in Korea. Estuarine, Coastal and Shelf Science, 48, 429-438. https://doi.org/10.1006/ecss.1998.0464
  60. Kjerfve, B.J. and Macill, K.E. (1989). Geographic and hydrodynamic characteristics of shallow coastal lagoon. Mar. Geol. 88, 187-200. https://doi.org/10.1016/0025-3227(89)90097-2
  61. Krone, R.B. (1975). Effects of physical alterations. In: M. Wiley(ed.). Estuarine processes. Academic Press, 2; 1.
  62. Leenknecht, D.A., Szuwalski, A. and Sherlock, A.R. (1992). Automated coastal engineering system, Technical reference, Version 1.07. U.S. Army Waterways Experiment Station, Vicksburg, Mississippi.
  63. Matsumoto, K., Takanezawa, T. and Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan, J. Oceanogr., 56, 597-581.
  64. Mehta, A.J., Hayter, E.J., Parker, W.R., Krone, R.B. and Teeter, A.M. (1989). Cohesive sediment transport. I: Process description. J. Hyd. Engrg.,115(8), 1076-1093. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:8(1076)
  65. Mehta, A.J., Parchure, T.M., Dixit, J.G. and Ariathurai, R. (1982). Resuspension potential of deposited cohesive sediment beds, in Estuarine Comparisons, V.S.Kennedy, Ed., Academic Press, New York, 348-362.
  66. Mellor, G.L. and Yamada,T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875. https://doi.org/10.1029/RG020i004p00851
  67. Meyer-Peter, E. and Muller, R. (1948). Formulas for bed-load transport. In: Proceedings of the International Association for Hydraulic Structures Research, Report of Second Meeting (Stockholm, Sweden), pp. 39-64.
  68. Nichols, M.M. and Biggs, R.B. (1985). Estuaries. In: R.A.Davis, Jr.(ed.). Coastal sedimentary environments(2nd. ed.). Spring-Verlag, 77-186.
  69. Nichols, M.M. and Poor, G. (1967). Sediment transport in a coastal plain estuary. J. Sed. Pet., 14, 222-234.
  70. Prandle, D. (1997). Tidal currents in shelf seas-their nature and impacts. Progress in Oceanography, 40, 245-261. https://doi.org/10.1016/S0079-6611(98)00013-5
  71. Prichard, D.W. (1967). What is estuary: Physical viewpoint. In: G.H.Lauff(ed.). Estuaries. Am. Assoc. Ad. Sci., 3-5.
  72. Ris, R.C., Holthuijsen, L.H. and Booij, N. (1999). A third-generation wave model for coastal regions 2. Verification. Journal of Geophysical Research, 104(C4), 7667-7681. https://doi.org/10.1029/1998JC900123
  73. Sanford, L.P. and Maa, J.P.-Y. (2001). A unified erosion formulation for fine sediments. Mar. Geol., 179, 9-23. https://doi.org/10.1016/S0025-3227(01)00201-8
  74. Smagorinsky, J. (1963). General circulation experiments with the primative equations, I. The basic experiment. Mon. Weather Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  75. Smith, J.D. and McLean, S.R. (1977). Spatially averaged flow over a wavy bed. J. Geophys. Res., 82, 1735-1746. https://doi.org/10.1029/JC082i012p01735
  76. Tetra Tech Inc. (2007). The Environmental Fluid Dynamics Code, Theory and Computation, Volume 2: Sediment and Contaminant Transport and Fate.
  77. Tolman, H.L. (1991). A third-generation wave model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21, 782-797. https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2
  78. U.S. Army (2008). Coastal Engineering Mannual, Chapter II-2, Meteorology and Wave Climate, EM 1110-2-1100, U.S. Army Corps of Engineers, Washington, DC.
  79. van Rijn, L.C. (1984a). Sediment transport, Part I: Bedload transport. J. Hyd. Engrg., 110, 1431-1455. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
  80. van Rijn, L.C. (1984b). Sediment transport, Part II: Suspended load transport. J. Hyd. Engrg., 110, 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  81. van Rijn, L.C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas, Aqua Publications, Amsterdam, Netherlands.
  82. Villaret, C. and Paulic M. (1986). Experiments on the erosion of deposited and placed cohesive sediments in an annular flume and a rocking flume. Coastal and Oceanographic Engineering Dept., University of Florida, Report UFL/COEL-86/007, Gainesville, FL.
  83. Wu, W., Wang, S.Y. and Yia, Y. (2000). Nonuniform sediment transport in alluvial rivers. J. Hyd. Res., 38, 427-434. https://doi.org/10.1080/00221680009498296

피인용 문헌

  1. A Study on Development of a GIS based Post-processing System of the EFDC Model for Supporting Water Quality Management vol.22, pp.4, 2014, https://doi.org/10.12672/ksis.2014.22.4.039
  2. Estimation of Pollution Loads from the Yeongsan River Basin using a Conceptual Watershed Model vol.30, pp.2, 2014, https://doi.org/10.15681/KSWE.2014.30.2.184
  3. Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary vol.19, pp.3, 2014, https://doi.org/10.7850/jkso.2014.19.3.180
  4. Seasonal variability of estuarine dynamics due to freshwater discharge and its influence on biological productivity in Yeongsan River Estuary, Korea vol.181, 2017, https://doi.org/10.1016/j.chemosphere.2017.04.085
  5. Organic Matter in the Sediments of Youngsan River Estuary : Distribution and Sources vol.23, pp.7, 2014, https://doi.org/10.5322/JESI.2014.23.7.1375
  6. Study on Variability of Residual Current and Salinity Structure According to River Discharge at the Yeoungsan River Estuary, South Korea vol.116, 2015, https://doi.org/10.1016/j.proeng.2015.08.392