DOI QR코드

DOI QR Code

Development of Kinetic Models Describing Kinetic Behavior of Bacillus cereus and Staphylococcus aureus in Milk

  • Kim, Hyoun Wook (National Institute of Animal Science, Rural development Administration) ;
  • Lee, Sun-Ah (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Yoon, Yohan (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resource, Konkuk University) ;
  • Ham, Jun-Sang (National Institute of Animal Science, Rural development Administration) ;
  • Han, Sang-Ha (National Institute of Animal Science, Rural development Administration) ;
  • Seo, Kuk-Hwan (National Institute of Animal Science, Rural development Administration) ;
  • Jang, Aera (Department of Animal Products and Food Science, Kangwon National University) ;
  • Park, Bum-Young (National Institute of Animal Science, Rural development Administration) ;
  • Oh, Mi-Hwa (National Institute of Animal Science, Rural development Administration)
  • Received : 2012.11.01
  • Accepted : 2013.03.19
  • Published : 2013.04.30

Abstract

This study developed predictive models to evaluate the kinetic behaviors of Bacillus cereus and Staphylococcus aureus in milk during storage at various temperatures. B. cereus and S. aureus (3 Log CFU/mL) were inoculated into milk and stored at $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, as well as $5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$, respectively, while bacterial populations were enumerated. The growth data were fitted to the modified Gompertz model to estimate kinetic parameters, including the maximum specific growth rate (${\mu}_{max}$; Log CFU/[$mL{\cdot}h$]), lag phase duration (LPD; h), lower asymptote ($N_0$; Log CFU/mL), and upper asymptote ($N_{max}$; Log CFU/mL). To describe the kinetic behavior of B. cereus and S. aureus, the parameters were fitted to the square root model as a function of storage temperature. Finally, the developed models were validated with the observed data, and Bias (B) and Accuracy (A) factors were calculated. Cell counts of both bacteria increased with storage time. Primary modeling yielded the following parameters; ${\mu}_{max}$: 0.14-0.75 and 0.06-0.51 Log CFU/mL/h; LPD: 1.78-14.03 and 0.00-1.44 h, $N_0$: 3.10-3.37 and 2.09-3.07 Log CFU/mL, and $N_{max}$: 7.59-8.87 and 8.60-9.32 Log CFU/mL for B. cereus and S. aureus, respectively. Secondary modeling yielded a determination of coefficient ($R^2$) of 0.926.0.996. B factors were 1.20 and 0.94, and A factors were 1.16 and 1.08 for B. cereus and S. aureus, respectively. Thus, the mathematical models developed here should be useful in describing the kinetic behaviors of B. cereus and S. aureus in milk during storage.

Keywords

References

  1. Adesiyun, A. A., Webb, L., and Rahaman, S. (1995) Microbiological quality of raw cow's milk at collection centers in Trinidad. J. Food Protect. 58, 139-146.
  2. Altekruse, S. F., Timbo, B. B., Mowbray, J. C., Bean, N. H., and Potter, M. E. (1998) Cheese-associated outbreaks of human illness in the United States, 1973 to 1992: Sanitary manufacturing practices protect consumers. J. Food Protect. 61, 1405-1407.
  3. Asperger, H. and Zangerl, P. (2002) Staphylococcus aureus. In: Encyclopaedia of dairy sciences. Roginski, H., Guquay, J. W., and Fox, P. F. (eds) Academic Press, San Diego, pp. 2563-2569.
  4. Baird-Parker, T. C. (2000) Staphylococcus aureus. In: The microbiological safety and quality of food. Lund, B., Baird- Parker, A. C., and Gould, G. W. (eds) Aspen Publishers, Inc., Gaithersburg, pp. 1317-1330.
  5. Baranyi, J. and Roberts, T. A. (1995) Mathematics of predictive food microbiology. Int. J. Food Microbiol. 26, 199-218. https://doi.org/10.1016/0168-1605(94)00121-L
  6. da Silva, M. C., Hofer, E., and Tibana, A. (1998) Incidence of Listeria monocytogenes in cheese produced in Rio de Janeiro, Brazil. J. Food Protect. 61, 354-356.
  7. Dens, E. J., Bernaerts, K., Standaert, A. R., and Van Impe, J. F. (2005) Cell division theory and individual-based modeling of microbial lag Part I. The theory of cell division. Int. J. Food Microbiol. 101, 303-318. https://doi.org/10.1016/j.ijfoodmicro.2004.11.016
  8. European Commission. (2000) Report on United States Barriers to trade and Investment. Bruessel, EU.
  9. FDA (Food and Drug Administration). (2010) Bacteriological Analytical Manual. Available from: http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/default.htm. Accessed Jun. 30. 2010.
  10. Gibson, A. M., Bratchell, N., and Roberts, T. A. (1987) The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J. Appl. Bacteriol. 62, 479-490. https://doi.org/10.1111/j.1365-2672.1987.tb02680.x
  11. Gran, H. M., Wetlesen, A., Mutukumira, A. N., Rukure, G., and Narvhus, J. A. (2003) Occurrence of pathogenic bacteria in raw milk, cultured pasteurized milk and naturally soured milk produced at small-scale dairies in Zimbabwe. Food Control 14, 539-544. https://doi.org/10.1016/S0956-7135(02)00117-2
  12. Halpin-Dohnalek, M. J. and Marth, E. H. (1989) Staphylococcus aureus: Production of extracellular compounds and behaviour in foods-a review. J. Food Protect. 52, 67-282.
  13. Headrick, M. L., Korangy, S., Bean, N. H., Angulo, F. J., Altekruse, S. F., Potter, M. E., and Klontz, K. C. (1998) The epidemiology of raw milk-associated foodborne disease outbreaks reported in the United States, 1973 through 1992. Am. J. Public Health. 88, 1219-1221. https://doi.org/10.2105/AJPH.88.8.1219
  14. Jay, J. M. (2000) Staphylococcal gatroenteritis. In: Modern food microbiology. Jay, J. M., Loessner, M. J., and Golden, D. A. (ed) Aspen Publishers Inc., Gaithersburg, pp. 441-460.
  15. Jung, J. H. and Lee, S. Y. (2010) Microbial growth in dry grain food (sunsik) beverages prepared with water, milk, soymilk, or honey-water. J. Food Sci. 75, M239-M242. https://doi.org/10.1111/j.1750-3841.2010.01598.x
  16. Klein, E. (1901) Pathogenic microbes in milk. J. Hyg. (Lond). 1, 78-95. https://doi.org/10.1017/S0022172400000061
  17. McDonals, K. and Sun, D. W. (1999) Predictive food microbiology for the meat industry: A review. Int. J. Food Mocrobiol. 52, 1-27. https://doi.org/10.1016/S0168-1605(99)00126-9
  18. McMeekin, T. A., Olley, J. N., Ross, T., and Rathowsky, D. A. (1993) Predictive microbiology: Theory and application. Research Studies Press Ltd., Taunton, Somerset.
  19. Medved'ova, A., Valik, L'., Sirotna, Z., and Liptakova, D. (2009) Growth characterization of Staphylococcus aureus in milk: a quantitative approach. Czech J. Food sci. 27, 443-453.
  20. Nauta, M. J., Litman, S., Barker, G. C., and Carlin, F. (2003) A retail and consumer phase model for exposure assessment of Bacillus cereus. Int. J. Food Microbiol. 83, 205-218. https://doi.org/10.1016/S0168-1605(02)00374-4
  21. Notermans, S. and in't Veld, P. (1994) Microbiological challenge testing for ensuring safety of food products. Int. J. Food Microbiol. 24, 33-39. https://doi.org/10.1016/0168-1605(94)90104-X
  22. Rall, V. L. M., Vieira, F. P., Rall, R., Vieitis, R. L., Fernandes Jr., A., Candeias, J. M. G., Cardoso, K. F. G., and Araujo Jr., J. P. (2008) PCR detection of staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Vet. Microbiol. 132, 408-413. https://doi.org/10.1016/j.vetmic.2008.05.011
  23. Roberts, T. A. (1997) Microbial growth and survival: Developments in predictive modeling. Food Technol. 51, 88-90.
  24. Ross, T. (1996) Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 81, 501-508.
  25. Ross. T., Dalgaard, P., and Tienungoon, S. (2000) Predictive modeling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol. 62, 231-245. https://doi.org/10.1016/S0168-1605(00)00340-8
  26. Steele, M. L., McNab, W. B., Poppe, C., Griffiths, M. W., Chen, S., Degrandis, S. A., Fruhner, L. C., Larkin, C. A., Lynch, J. A., and Odumeru, J. A. (1997) Survey of Ontario bulk tank raw milk for food-borne pathogens. J. Food Protect. 60, 1341-1346.
  27. Tamplin, M. L., Paoli, G., Marmer, B. S., and Phillips, J. (2005) Models of the behavior of Escherichia coli O157:H7 in raw sterile ground beef stored at 5 to $46^{\circ}C$. Int. J. Food Microbiol. 100, 335-344. https://doi.org/10.1016/j.ijfoodmicro.2004.10.029
  28. Yoon, Y., Geornaras, I., Kendall, P. A., and Sofos, J. N. (2009) Modeling the effect of marination and temperature on Salmonella inactivation during drying of beef jerky. J. Food Sci. 74, M165-M171. https://doi.org/10.1111/j.1750-3841.2009.01126.x
  29. Zhao, L., Chen., Y., and Schaffner, D. W. (2001) Comparison of logistic regression and linear regression in modeling percentage data. Appl. Environ. Microbiol. 67, 2129-2135. https://doi.org/10.1128/AEM.67.5.2129-2135.2001
  30. Zwietering, M. H., de Wit, J. C., and Notermans, S. (1996) Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurized milk at the point of consumption. Int. J. Food Microbiol. 30, 55-70. https://doi.org/10.1016/0168-1605(96)00991-9

Cited by

  1. Growth and toxin production of Bacillus cereus strains in reconstituted initial infant milk formula 2017, https://doi.org/10.1016/j.foodcont.2017.05.006