DOI QR코드

DOI QR Code

Implementation Issues in Brain Implantable Neural Interface Microsystem

뇌 삽입형 신경 접속 마이크로 시스템의 구현상 이슈

  • Song, Yoon-Kyu (Graduate School of Convergence Science and Technology, Seoul National University)
  • 송윤규 (서울대학교 융합과학기술대학원)
  • Received : 2013.04.02
  • Published : 2013.04.25

Abstract

In this paper, we investigate several important issues on the implementation of a totally implantable microsystem for brain-machine interface that has been attracting a lot of attention recently. So far most of the scientific research has been focused on the high performance, low power electronics or systems such as neural signal amplifiers and wireless signal transmitters, but the real application of the implantable microsystem is affected significantly by a number of factors, ranging from design of the encapsulation structure to physiological and anatomical characteristics of the brain. In this work, we discuss on the thermal effect of the system, the detecting volume of the neural probes, wireless data transmission and power delivery, and physiological and anatomical factors that are critically important for the actual implementation of a totally brain implantable neural interface microsystem.

본 논문은 최근 활발하게 연구되고 있는 뇌-기계 접속을 위한 완전 삽입형 마이크로 시스템의 구현에 있어서 중요한 이슈들을 고찰한다. 현재까지의 과학 기술적 연구는 신경 신호 증폭기, 무선 신호 전송 등 주로 고성능 저전력 전자기기 및 시스템을 구현하는데 집중되어 왔으나, 마이크로 시스템의 실제적인 응용은 전자 기기의 특성뿐만 아니라 밀봉 구조의 디자인에서 뇌의 생리 해부학적 특성에 이르기까지 여러 가지 요인에 의해 영향을 받게 된다. 본 논문은 특히 뇌 삽입형 마이크로 시스템의 실질적인 구현에 결정적인 영향을 주는 시스템 발열의 영향, 신경 프로브의 감지 부피, 무선 데이터 전송 및 전력 전달, 그리고 뇌의 생리 해부학적인 고려 요인에 대해 논의한다.

Keywords

References

  1. 이상민, "BMI 시스템 기술 현황," 전자공학회지, 제34권, 제9호, 1035-1044쪽, 2007년 9월
  2. 박세익, 김성준, "신경전자공학 시대의 도래," 전자공학회지, 제34권, 제9호, 1002-1009쪽, 2007년 9월
  3. L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D. Penn and J. P. Donoghue, "Neuronal ensemble control of prosthetic devices by a human with tetraplegia," Nature, Vol. 442, pp. 164-171, July 2006. https://doi.org/10.1038/nature04970
  4. L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt and J. P. Donoghue, "Reach and grasp by people with tetraplegia using a neurally controlled robotic arm," Nature, Vol. 485, pp. 372-375, May 2012. https://doi.org/10.1038/nature11076
  5. M. S. Chae, Z. Yang,M. R. Yuce, L. Hoang and W. T. Liu, "A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 17, no. 4, pp. 312-321, August 2009. https://doi.org/10.1109/TNSRE.2009.2021607
  6. S. B. Lee, H. M. Lee, M. Kiani, U. M. Jow and M. Ghovanloo, "An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications," IEEE Transactions on Biomedical Circuits and Systems, Vol. 4, no. 6, pp. 360-371, December 2010. https://doi.org/10.1109/TBCAS.2010.2078814
  7. Y.-K. Song, W. R. Patterson, C. W. Bull, J. Beals, N. Hwang, A. P. Deangelis, C. Lay, J. L. McKay, A. V. Nurmikko, M. R. Fellows, J. Simeral, J. P. Donoghue and B. W. Connors, "Development of a chipscale integrated microelectrode/microelectronic device for brain implantable, neuroengineering applications," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, no. 2, pp. 220-226, June 2005. https://doi.org/10.1109/TNSRE.2005.848337
  8. P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger and F. Solzbacher, "A low power integrated circuit for a wireless 100-electrode neural recording system," IEEE Journal of Solid-State Circuits, Vol. 42, no. 1, pp. 123-133, January 2007. https://doi.org/10.1109/JSSC.2006.886567
  9. R. R. Harrison, R. J. Kier, C. A. Chestek, V. Gilja, P. Nuyujukian, S. Ryu, B. Greger, F. Solzbacher and K. V. Shenoy, "Wireless neural recording with single low-power integrated circuit," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 17, no. 4, pp. 322-329, August 2009. https://doi.org/10.1109/TNSRE.2009.2023298
  10. S. Kim, R. Bhandari, M. Klein, S. Negi, L. Rieth, P. Tathireddy, M. Toepper, H. Oppermann, F. Solzbacher, "Integrated wireless neural interface based on the Utah electrode array," Biomedical Microdevices, Vol. 11, No. 2, pp. 453-466, February 2009. https://doi.org/10.1007/s10544-008-9251-y
  11. C. A. Chestek, V. Gilja, P. Nuyujukian, R. Kier, F. Solzbacher, S. I. Ryu, R. A. Harrison and K. V. Shenoy, "HermesC: Low-power wireless neural recording system for freely moving primates," IEEE Transactions on Neural System and Rehabilitation Engineering, Vol. 17, no. 4, pp. 330-338, August 2009. https://doi.org/10.1109/TNSRE.2009.2023293
  12. Y.-K. Song, D. A. Borton, S. Park, W. R. Patterson, C. W. Bull, F. Laiwalla, J. Mislow, N. Rao, J. D. Simeral, J. P. Donoghue and A. V. Nurmikko, "Active microelectronic neurosensor arrays for implantable brain communication interfaces," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 17, no. 4, pp. 339-345, August 2009. https://doi.org/10.1109/TNSRE.2009.2024310
  13. S. Kim, R. Harrison and F. Solzbacher "Influence of system integration and packaging on its inductive power link for a wireless neural interface device," IEEE Transactions on Biomedical Engineering, Vol. 56, No. 12, pp. 2927-2936, December 2009. https://doi.org/10.1109/TBME.2009.2028614
  14. A. V. Nurmikko, J. P. Donoghue, L. R. Hochberg, W. R. Patterson, Y.-K. Song, C. W. Bull, D. A. Borton, F. Laiwalla, S. Park, Y. Ming, J. Aceros, "Listening to brain microcircuits for interfacing with external world: progress in wireless implantable microelectronic neuroengineering devices," Proceedings of the IEEE, vol. 98, no. 3, pp. 375-388, March 2010. https://doi.org/10.1109/JPROC.2009.2038949
  15. K. M. Silay, C. Dehollain and M. Declercq, "Inductive power link for a wireless cortical implant with two-body packaging," IEEE Sensors Journal, Vol. 11, no. 11, pp. 2825-2833, November 2011. https://doi.org/10.1109/JSEN.2011.2170676
  16. G. Strangman, D. A. Boas and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biological Psychatry, Vol. 52, no. 7, pp. 679-693, October 2002. https://doi.org/10.1016/S0006-3223(02)01550-0
  17. G. M. Friehs, Private Communication, March 2004.
  18. D. Edell, Insulating "Biomaterials N01-NS-9- 2323," First Quarter Progress Report October- December 2002, National Institutes of Health, January 2003.
  19. P. Mandlik, J. Gartside, L. Han, I-Ch. Cheng, S. Wagner, J. A. Silvernail, R.-Q. Ma, M. Hack and J. J. Brown, "A single-layer permeation barrier for organic light-emitting displays," Applied Physics Letters, Vol. 92, no. 10, p. 103309, March 2008. https://doi.org/10.1063/1.2890432
  20. A. Sharma, L. Rieth, P. Tathireddy, R. Harrison, H. Oppermann, M. Klein, M. Topper, E. Jung, R. Normann, G. Clark and F. Solzbacher, "Long term in vitro functional stability and recording longevity of fully integrated wireless neural interfaces based on the Utah slant electrode array," Journal of Neural Engineering, Vol. 8, pp. 045004, 2011. https://doi.org/10.1088/1741-2560/8/4/045004
  21. J. P. Seymour, Y. M. Elkasabi, H. Y. Chen, J. Lahann, D. R. Kipke, "The insulation performance of reactive parylene films in implantable electronic devices," Biomaterials, Vol. 30, no. 31, pp. 6158-6167, October 2009. https://doi.org/10.1016/j.biomaterials.2009.07.061
  22. J.-M. Hsu, L. Rieth, R. A. Normann, P. Tathireddy, "Encapsulation of an integrated neural interface device with parylene C," Journal of Biomedical Engineering, Vol. 56, No. 1, pp. 23-29, January 2009.
  23. C. Hassler, R. P. von Metzen, P. Ruther, T. Stieglitz, "Characterization of parylene C as an encapsulation material for implanted neural prostheses," Journal of Biomaterials Research Pt. B: Applied Biomaterials, Vol. 93B, no. 1, pp. 266-274, April 2010.