

1. 서 론

1990년대 초반에 설계 및 건설이 시작되어 2004년 4월에 개통된 경부고속철도는 고속열차 의 주행안전성과 승객의 승차감 확보 측면에서 공용 내하력 평가 및 시설물 거동에 대한 이해가 매우 중요하다. 특히, 일반철도와는 다르게 고속 으로 주행하는 경부고속철도는 차량의 고속주행 에 의한 교량의 공진을 포함한 동적 거동 문제와 열차 운행 시 발생할 수 있는 한계조건(종방향 변 위, 비틀림 각변화 등)의 검토도 매우 중요하다.

일반적으로 재하시험은 대상구조물의 활하중 에 대한 실제적인 구조물 거동을 파악, 응답특성 을 규명하여 구조해석상 이론적인 응답과 비교 함으로서 구조물의 안전도 및 내하력을 평가하 기 위한 자료를 획득할 목적으로 실시한다. 금번 경부고속선 교량에 대한 재하시험에서는 이러한 일반적인 재하시험 목적 외에 열차 운행 시 발생 할 수 있는 한계조건에 대한 검증을 실시할 목적 으로 다양한 항목에 대한 계측을 실시하고 분석 을 수행하였다. 본 사례에서는 특히, 동적재하시 험 및 상시 운행 중인 열차에 대한 상시계측 결 과에 대해 분석하고자 한다.

2. 재하시험 목적 및 분석 방법

교량의 동적재하시험 및 고속철도 운행을 위 한 한계조건 검토를 위해 실시한 분석 항목 및 방법은 다음과 같다.

2.1 동적재하시험

2.1.1 충격계수 산정

교량의 노면상태, 열차의 주행속도, 지간장, 고

^{1) (}재)한국건설품질연구원 부장

^{2) (}재)한국건설품질연구원 차장

^{3) (}재)한국건설품질연구원 과장

^{4) (}재)한국건설품질연구원 부장

^{*} E-mail : cmd201@daum.net

정하중과 활하중의 비, 구조적 특성 등의 다양한 인자들에 의하여 정적하중보다 교량에 더 큰 영 향을 줄 수 있는 활하중에 의한 충격영향 정도를 파악하기 위해 동적주행시험시 측정된 변위를 이 용하여 충격계수를 구한다. 동적주행 시험의 각 속도별 동적 응답 곡선을 Low Pass Filtering에 의해서 필터링한 최대정적응답〈Dsta(max)> 곡선을 기준으로 하여 계측 최대동적응답치〈Ddyn(max)> 와 비교하여 실측충격계수를 산정한다.

동적증폭율(D.L.F) = $\frac{Ydyn}{Ysta(\max)}$ 실측충격계수(i) = D.L.F-1

2.1.2 고유진동수 분석

교량의 실측 고유진동수를 정확하게 측정하기 위해서는 고유치 해석을 선행하거나, 종전의 사 례를 검토하여 대상 물리량의 진동수를 예상하 여 진동수의 측정범위를 결정하여야 하며, 측정 된 주파수가 예상된 주파수를 크게 벗어나는 경 우에는 반드시 원인을 분석하여야 한다.

교량의 실측 고유진동수는 시험열차가 교량을 통과한 후 여진구간에서 발생되는 교량의 처짐 또는 가속도변환기에 의해 측정된 가속도신호에 대한 FFT(Fast Fourier Trans-form)분석방 법을 실시하여 구할 수 있다.

Fig. 1 처짐 이력곡선

2.1.3 감쇠비 산정

열차통과에 따라 구조물에 발생된 진동은 시 간경과에 따라 감소되어 종국적으로는 멈추게 된다. 이와 같이 점성감쇠를 가진 구조물의 동적 운동방정식은 다음과 같이 나타낼 수 있다.

 $\ddot{mu}(t) + \dot{cu}(t) + ku(t) = 0$

상기 식의 각 항은 각각 관성력, 감쇠력 및 탄 성력을 나타낸다. 이중에서 감쇠력 항목인 cu(t)의 c는 구조물의 감쇠정도를 나타내는 계수로서 감쇠계수라 한다. 한편, 동적운동방정식의 해를 구하기 위하여 감쇠계수 c를 질량, 진동수 및 감 쇠비의 곱으로 나타낼 수 있다.

 $\vec{\neg}, c = 2mw\zeta$

여기에서, ζ : 감쇠비 (damping ratio) ζ < 1 : 부족감쇠 (under damping) ζ = 1 : 임계감쇠 (critical damping) ζ > 1 : 과감쇠 (over damping)

실제 구조물의 감쇠비는 구조물에 대한 동적 처짐 그래프에서 i-cvcle 떨어진 두 최대 변위

Fig. 2 가속도에 의한 FFT 분석(예)

Fig. 3 단자유도 감쇠 구조물의 자유진동

값으로부터 다음과 같이 산정할 수 있다.

$$\zeta = \frac{1}{2\pi j} \times \ln\left(\frac{u_i}{u_{i+j}}\right)$$

2.2 고속철도 운행을 위한 한계조건 검토

2.2.1 교량 상판 수직가속도 제한

유럽의 UIC 규정에 근거한 BRDM(bridge design manual :Systra, 1995)에 따르면, 고속열차의 주행안전성 확보를 위해서 220km/h 이상의 속 도에서는 deck 수직가속도의 검토를 의무화하 고 있다. 특히 유도상 궤도의 경우 도상자갈의 교란을 방지하는 목적으로 수직가속도 상한을 0.35g로 제한하고 있으며, 무도상 궤도교량의 경우 수직가속도 상한을 0.5g 이내로 제한하고 있다. ERRI D214 RP9(European Rail Reserch Institute, 1999) 보고서는 다음 Table 1과 같 이 과도한 수직방향가속도에 의한 잠재적 위험 요소를 구분하여 제시하고 있다.

국내 설계기준에는 상판의 수직 가속도는 열 차속도가 200km/hr보다 빠를 경우 의무적으로 검토하여야 하며 실제적인 열차하중이 적용되어 야 한다고 명시되어 있다. 또한, 일부 구간의 열 차속도가 200km/hr보다 빠르지 않은 곳이 있을 경우에도 해당 열차 최대 주행 속도 내에서는 구 조물의 공진이 발생하지 않도록 설계하여야 한 다. 상판의 수직가속도는 0.35g 이하로 제한된

Table 1 교량 상판 수직가속도방향에 따른 잠재적 위험요인

다. 여기서 g는 중력가속도이다.

과도한 가속도의 원인으로는 동절기 도상의 빙결, 교량의 국부진동, 침목과 교량 사이의 충 격, 차륜의 편마모 등이며 이러한 과도한 가속도 가 발생할 경우 도상 결속력 약화에 의한 궤도의 틀림과 자갈의 비산이 발생하게 되며 본 과업에 서는 대상 교량 상판의 수직가속도에 대한 실제 현장 계측을 통해 기준 이상의 가속도로 인한 2 차 손상 발생 가능여부를 판단하고자 하였다.

2.2.2 교량 상판 단부회전각 변화 제한

UIC 774-3에 의하면, 연직하중에 의한 단부 회전각은 궤도/교량 상호작용 거동을 만족시키 기 위한 중요한 인자로 deck 상부 끝단에서의 변위를 제한함으로써 도상의 안전성을 유지하도 록 규정하고 있다. 장대레일상에서 온도변화, 시 동/제동하중 및 연직하중에 의한 deck 상부 끝 단과 성토부 그리고 연속하는 두 deck 상부사이 의 거리의 합이 단부회전각의 최대허용치가 된 다. 국내 설계기준에는 열차속도가 220km/hr 이상의 고속 주행이 요구되는 교량에 대해서는 추가적으로 실 열차 하중에 대하여 동적 해석에

Table 2 단부회전각 설계기준

주) h(m)는 하중 재하시점에 레일면에서부터 휨에 의한 수평 위 치 변화가 없는 고정수준면(단면 중심 또는 교량 받침의 회 전 중심)까지의 높이 차를 말한다.

의한 동적효과가 고려된 조건에서 교량 상판 단 부의 회전각을 다음 값 이하로 제한하여야 한다 고 명시되어 있다. 단, 이때 단면의 상하연 온도 차의 영향은 고려하지 않는다.

2.2.3 교량 상판 종방향 변위 제한

교량 위를 열차가 주행하게 되면 연행되는 열 차의 하중에 의하여 교량은 다양한 응답이 나타 나게 된다. 이중 거더 신축부의 궤도틀림에 영향 을 발생시키는 거동으로서는 거더의 수직처짐에 의한 단부의 회전으로 인한 신축부의 종방향 변 위로서 이는 거더의 수직변위와 유사한 형상으 로 나타나게 된다.

국내 설계기준에는 신축이음이 없는 장대레일 이 교량 상에 부설되는 경우에는 이동/제동 하중 에 의한 상판의 최대 허용 절대 수평 변위는 10mm로 제한되어야 한다고 명시되어 있다.

종방향 변위 제한에 대한 금회 재하시험은 상 판 단부, 수평력 전달장치에서 측정하였다.

Fig. 4 면틀림 기준

Table 3 면틀림(twist) 기준

속도(km/h)	면틀림(mm/m)	3m 기준 면틀림 변화량	
$V \le 120$	1.5	4.5mm/3m	
$120 < V \le 220$	1.0	3.0mm/3m	
220 < V	0.5	1.5mm/3m	
실 고속 열차	0.4	1.2mm/3m	

2.2.4 교량 교축직각방향 회전에 의한 캔트 변 화(비틀림 각변화) 제한

프랑스 고속철도 설계기준에 의하면, 면틀림은 "동적계수(Dynamic Factor)를 고려한 UIC 71 하중 아래에서 유도된 3m 기준에서의 캔트 변 화량(mm/궤도1m)"이라고 정의되어 있다. 면틀 림은 주행안전성 관련 기준이며, 열차속도에 따 라 기준 값이 다르다. 속도에 따른 고속열차의 상판의 면틀림은 실 열차하중에 의해 0.4mm/m 가 검토되어야 한다고 규정되어 있다.

국내 설계기준에는 실제열차하중과 그들의 실 동적증폭이 고려되어질 때 상부 교량 상판 비틀림 각변화(특히 교량 단부의 캔트 변화)는 교량의 교 축직각방향 회전에 의해 3m에 대하여 0.4mm/m 까지 허용하여야 한다고 명시되어 있다.

2.2.5 시・제동에 의한 종방향 변위

열차가 시동이나 가속 또는 주행중 제동을 하 게 되면 종방향으로 하중이 발생하고 이 힘이 레 일을 통하여 궤도 및 하부 노반에 전달되고 이는

Table 4 시·제동에 의한 종방향 변위 국내 설계기준

기준항목	설 계 기 준
교량과 궤도 상대변위	•4mm(시 · 제동하중 작용시)
상판 절대변위	•신축이음매가 없는 경우 상관 수평절대변위 : ±5㎜ •신축이음매가 있는 경우 상관 수평절대변위 : 30㎜
상판과 상판, 상판과 교대 사이 변위	•상판과 상판, 상판과 교대 사이 변위 : 8㎜(수직차량하중(충격하중 포함) 작용시)

자갈에 위치한 침목을 종방향으로 거동시키게 된다. 토노반의 경우에는 종방향력이 레일-침목 -자갈-강화노반으로 전달됨으로 이들 종방향 력이 큰 문제가 되지 않으나 교량 특히 거더 신 축부에서는 온도신축 및 열차에 의한 거더거동 으로 인한 거더 신축부의 회전, 수직 및 교량받 침의 수직거동 등 복잡한 거동에 추가되게 된다. 더욱이 교각의 강성이 낮거나 높은 경우에는 종 방향으로 이동됨으로서 거더 신축부의 자갈 이 완을 더욱 증가시키게 된다.

3. 재하시험 실시 계획

3.1 대상시설물 현황

구 분	연장(m)	형식	경간장×경간수
문곡교	275	PSC BOX	(2@40)×3+1@40×1
시목1교	201	라멘	(5@10)×7
시목교	717	PSC BOX	(2@40)×9
중척1교	235	PSC BOX	(2@40)×3
중척2교	315	PSC BOX	(2@40)×4
금강2교	1,635	PSC BOX	$(1@40 \times 1) + (2@40 \times 17)$ +(1@40) +(1@45+1@70 +1@45) +(1@40)
공통사항	준공년도:2001년, 차로수:복선		

Table 5 대상시설물 현황

3.2 계측기 설치 현황

계측센서의 부착위치는 PSC BOX GIRDER 교량의 1경간 단순구간, 2경간 연속구간, 3경간 연속구간과 RC-Rahmen 교량의 최대 응답발생 위치를 고려하여 결정하였으며 상세부위는 다음 그림과 같다.(변형률게이지-(ST重), 변위게이 지-(DT介), 가속도계(@))

Fig. 5 1경간 단순구간 계측센서 부착위치

Fig. 7 3경간 연속구간 계측센서 부착위치 -계속

단부 지점부 거동(상하방향)

Fig. 8 라멘교 계측센서 부착위치

지점부 상하방향 거동 측정

수평력분산장치 변위계설치

동적재하시험 전경

Photo 1 재하시험 전경

3.3 시험열차 제원 및 주행속도

Table 6 시험열차 제원

차량종류	축간너비	축하중
KTX	1,500mm	170kN

Table 7 시험열차 속도

시험열차 상행선	시험열차 하행선		
10km/hr	10km/hr		
30km/hr	30km/hr		
60km/hr	80km/hr		
90km/hr	120km/hr		
120km/hr	150km/hr		
140km/hr	170km/hr		
160km/hr	220km/hr		
200km/hr	-		
250km/hr	-		
상시열차 상행선	상시열차 하행선		
270km/hr 미만(10회)	270km/hr 미만(10회) 280km/hr 이상(10회)		

지점부 종방향 거동 측정

중앙부 상하방향 거동측정

4. 계측결과 분석

4.1 동적재하시험 결과 분석

4.1.1 실측 충격계수

각 교량의 구조형식별로 측정된 실측충격계수 와 이론충격계수를 비교하여 도시하면 다음과 같다. 이를 고찰하면 PSC Box Girder교 중 문 곡교, 시목교 및 중척1교에서는 실측충격계수가 이론충격계수보다 작게 측정되었으나 중척2교 및 금강2교에서는 실측충격계수가 이론충격계수 보다 크게 측정되었다. Rahmen교인 시목1교의 경우 이론충격계수 산정시 Table 8에 제시된 Lc값이 작아 실제충격계수 대비 높은 이론충격 계수가 산정되었다.

동일형식의 교량에 있어서 이론충격계수와 실 측충격계수의 대소 관계에 차이가 발생하는 원 인을 명확히 추정하는 것은 용이하지 않으나 다 음의 두 가지를 추론할 수 있다.

첫째, 3경간 연속교인 금강2교의 경우에는 곡

Fig. 9 구조형식별/교량별 충격계수 비교

구 분		고속철도 설계기준 (2005년)		철도 설계기준 (2011년)		
		Lc	이론충격계수	L	이론충격계수	
	1경간 단순	40m	0.055	40m	0.200	
PSC	2경간 연속	(40+40)/2*1.2=48m	0.034	40m	0.200	
Girder	0거기 여소	(4E + 70 + 4E) /2+1 2=00 2m	0.000	45m(외측)	0.200	
	3/3간 연락	(45+70+45)/3*1.3=69.3m		70m(외측)	0.200	
Rahmen	5경간	(10*5)/5*1.5=15	0.212	15m	0.323	
0.450						

Table 8 설계기준별 충격계수 비교표

선반경이 R=7,000m인 곡선구간에 위치하며, 중척2교의 경우에는 직선구간이기는 하나 금강2 교측의 곡선구간에서 제일 가까운 지점에 위치 하고 있다. 따라서 열차가 곡선구간을 통과하며 횡진동 등이 발생되고 이에 따라 교량구조물에 진동이 전달되는 경우 실측충격계수가 크게 발 생될 수 있을 것으로 추정된다. 둘째, 고속철도 설계기준에 제시된 실측충격계수 산정식은 교량 의 경간장이 길어지거나 연속화되어 있는 경우 이론충격계수를 매우 작은 값으로 산정하도록 되어 있다. 다음 Table 8에 고속철도설계기준 및 철도설계기준에 제시된 이론충격계수 산정식 의 지간장에 따른 변화를 나타내었다. 이를 고찰 하면 고속철도설계기준상의 이론충격계수는 철 도설계기준상의 이론충격계수 대비 매우 작은 것을 알 수 있으며, 특히 지간장이 60m 이상인 경우 이론충격계수가 거의 0에 가깝게 된다. 금강 2교 3경간 연속구간의 경우 실측충격계수값이 0.01~0.047로 매우 작음에도 불구하고, 이론충 격계수가 0으로서 이론충격계수보다 실측충격계 수값이 더 큰 것으로 분석되었다.

즉 고속철도설계기준상의 이론충격계수 산정 식이 실측충격계수를 반영할 수 없을 정도로 작 기 때문에 이론충격계수 산정식에 대한 개선이 필요한 것으로 사료된다. 4.1.2 고유진동수

각 교량에서 실측된 가속도의 FFT분석을 통 해 산정한 실측고유진동수는 PSC BOX Girder 교의 경우 4.102~4.883Hz, Rahmen교의 경우 19.238~19.824Hz로 나타났으며, 이는 구조해 석에 의한 PSC BOX Girder교 및 Rahmen교의 이 론 고유진동수인 2.353~2.979Hz 및 17.100Hz 대비 133~171% (PSC BOX Girder), 113~ 116% (Rahmen)로 모든 개소에서 실측 고유진 동수가 이론 고유진동수 이상인 것으로 분석되 었다.

각 구조 형식별로 고유진동수를 비교해보면, PSC POX Girder구간중 경간장이 40m인 1경 간 단순구간과 2경간 연속구간은 유사한 크기의 고유진동수를 가지며, 금강2교 3경간 연속구간 (45m+70m+45m)은 경간장이 40m인 구간보 다 작은 것으로 나타났다. 그 반면 경간장이 10m로 짧은 Rahmen구간은 고유진동수의 값이 매우 큰 것으로 분석되었다. 즉, 경간장이 길수 록 고유진동수의 값은 작아지고, 경간장이 짧을 수록 고유진동수는 커지는 것으로 확인되었다.

4.1.3 감쇠비 변화

동적주행시험을 통하여 획득된 교량의 속도별 데이터 중 정모멘트 구간에 설치된 변위계의 데 이터를 Band Pass Filtering하여 1차 고유주기

Fig. 11 감쇠비 산정(예)

Fig. 12 구조형식별/교량별 감쇠비 비교

파형을 추출하였으며 그 이력곡선을 이용하여 감쇠비 변화를 분석하였다.

교량 구조형식별로 산정된 감쇠비를 고찰하면, PSC BOX Girder 교량의 경우 1경간 단순구간은 2.02~2.13%, 2경간 연속구간은 2.02~2.34%, 3경간 연속구간은 0.91~1.14%로 산정되었으 며, Rahmen구간은 2.65%로 분석되었다. 경간 장이 같은 1경간 단순구간과 2경간 연속구간은 감쇠비가 비슷한 경향을 보였고 금강2교의 3경 간 연속구간은 다른 구간과 달리 경간장이 길어 감쇠비가 낮게 측정되어 전반적으로 경간장이 긴 연속교량에서는 감쇠비가 낮은 것으로 분석 되었다. 4.2.1 교량 상판 수직가속도

교량 상판에 부착된 가속도계를 이용하여, 열 차 통과시 발생된 상판 수직가속도를 측정하였 으며 이를 교량의 구조형식별로 정리하여 다음 Fig. 13에 나타내었다. 이를 고찰하면 PSC BOX Girder의 경우 상판수직가속도의 대소는 1경간 단순구간 > 2경간 연속구간 > 3경간 연속구간의 경향을 가지는 것으로 나타났으며 문곡교 하행선 에서 계측된 280km/hr 이상의 고속주행시 수직 가속도는 최대 0.255g로서 동일 경간 270km/hr 이하에서 측정된 수직가속도에 비해 1.6~1.7배 높은 것으로 분석되었고 Rahmen구간은 최대 0.140g의 값을 나타내었다. 측정된 상판 수직가

4.2 고속철도 운행을 위한 한계조건 결과 분석

Fig. 14 구조형식별/교량별 단부 회전각 비교

속도가 모두 제한조건인 0.35g 이하로 측정되어 설계조건을 만족하고 있는 것으로 확인되었다. 또한, 대체적으로 상시열차에 의한 수직가속도 가 시험열차에 의한 수직가속도 보다 높게 측정되 어 열차 속도 증가에 따라 교량 상판의 수직가속 도가 증가하는 경향이 있는 것으로 분석되었다.

4.2.2 교량 상판 단부 회전각 변화

PSC BOX Girder 교량 상관 단부 회전각에 대한 분석결과, 1경간 단순구간(변위계 설치위 치:교대)은 -145.40~212.38µrad(제한조건: 973.7µrad), 2경간 연속구간(변위계 설치위치: 교각)은-134.54~255.94µrad(제한조건: 1947.4 µrad), 3경간 연속구간(변위계 설치위치: 교각) 은 -21.28~66.17μrad(제한조건 : 1403.5μ rad)로 모두 제한조건 이하로 측정되어 설계조 건을 만족하고 있는 것으로 확인되었다.

계측된 값을 거더의 형식별로 분석한 결과, 1 경간 단순구간(평균:153.33/-72.25)의 회전 각과 2경간 연속구간(평균:154.72/-65.19)의 회전각이 거의 일치하는 것으로 보아 경간장이 같은 경우 회전각은 비슷한 경향을 보이는 것으로 분석되었고 3경간 연속구간(평균:66.1/-20.4) 은 1경간 단순구간 및 2경간 연속구간 보다 약 2.5배 이상 작게 측정되어 지간장이 길고 연속 화된 경우 교량의 단부회전각은 작은 것으로 분 석되었다.

문곡교 하행선에서 계측된 고속주행(280km/hr 이

상)시 단부회전각은 동일 경간에서 계측된 270km/hr 이하의 시험 · 상시열차의 단부 회전각 대비 약 1.5배/2.4배(최대/최소) 정도 높게 분석되었다.

4.2.3 교량 상판 종방향 변위

시험열차 및 상시열차에 대한 거더 상 · 하연 및 수평력 분산장치의 종방향 변위를 분석한 결 과, 거더 상연에서는 0.096~0.329mm, 거더 하연에서는 0.144~0.793mm, 수평력 분산장 치 위치에서는 0.152~0.316mm로 허용범위 10mm 이하로 측정되어 설계조건을 만족하고 있는 것으로 확인되었다.

지점부 및 수평력 분산장치 종방향 변위의 경 우 시험열차와 상시열차의 변위값이 대체로 비 슷한 양상을 보이며 경간별 및 구조형식별 차이 로 인한 변위값의 규칙성은 없는 것으로 판단되 고 전반적으로 0.8mm 미만의 아주 미소한 종방 향 변위를 갖고 있는 것으로 분석되었다. 다만, 문

■하여

Fig. 15 구조형식별/교량별 지점부 종방향 변위 비교

Fig. 16 구조형식별/교랑별 수평력 분산장치 종방향 변위 비교

85

곡교 하행선에서 계측된 고속주행(280km/hr 이 상)시 거더 하연의 종방향 변위가 최대 0.793mm 까지 측정되어 고속주행에 따른 종방향 변위의 증가경향이 나타났으나 허용치보다 매우 작아 문제는 없는 것으로 판단된다.

4.2.4 교량 교축직각방향 회전에 의한 캔트 변 화(비틀림 각변화)

시목교의 열차운행에 따른 비틀림 각에 대한 변화를 분석한 결과, 측정된 비틀림 각변화가 제 한조건인 0.4mm/m 이하로 측정되어 설계조건 을 만족하고 있는 것으로 확인되었다.

4.2.5 시동/제동에 의한 종방향 변위

중척1교에서 실시된 시동/제동에 의한 종방향 변위 분석 결과, 지점부 상·하연 변위 및 수평

Fig. 17 시·제동에 의한 종방향 변위(중척1교)

력 분산장치 좌·우측 변위값(시동:0.019mm, 제동:0.09mm)은 모두 비슷한 측정값이 분석되 었고 시동시 보다 제동시 3.5~4.7배 변위가 더 크게 발생되었고 모두 제한 조건인 5mm 이하 (급시동/급제동을 동시에 실시하여 계측하지 않 음)로 측정되어 설계조건을 만족하고 있는 것으 로 확인되었다.

4.2.6 문곡교 고속주행(280km/hr 이상)에 대 하 고참

문곡교 하행선의 경우 금회 상시열차 운행에 따른 동적거동 분석에 있어서 KTX열차의 속도 가 270km/hr 이하인 경우에 비해 280km/hr 이 상으로 주행하는 경우 변위가 크게 증폭되는 것으 로 나타났으며 그 원인을 고찰하면 다음과 같다. 문곡교 하행선은 금번 재하시험 대상교량 중 가장 북측에 위치한 교량으로서 열차가 하행선 으로 운행하는 경우에는 시속 300km/hr 정도까 지 열차의 운행이 가능하며, 이 구간을 통과하면 서 금강2교 위치의 곡선구간에 진입하기 위해 열차속도가 감소된다. 상시열차 통과 시의 변위 그래프로부터 열차의 통과속도를 추정한 결과, 문곡교를 전후로 하여 열차가 감속되는 시점에 따라 문곡교 통과 시점에서의 실제 열차속도가 221~296km/hr로 매우 다양하게 변화되는 것으

Fig. 18 시·제동에 의한 종방향 변위 비교

Fig. 19 문곡교(1경간 단순구간, DT1) 열차속도에 따른 처짐곡선

로 측정되었으며, 그 통과속도에 따라 교량의 거 동이 다르게 나타나고 있는 것으로 분석되었다.

일례로, 다음 Fig. 19에는 상시열차의 속도가 221km/hr, 265km/hr, 282km/hr 및 291km/hr 인 경우의 1경간 단순교 지간중앙부 하면에 설 치된 DT1 변위계의 처짐곡선을 보여준다. 이를 고찰하면 열차의 속도가 증가함에 따라 객차 통 과시에 발생되는 변위의 변화량(최대치-최소 치)이 증가하는 경향이 있으며, 열차의 속도가 282km/hr 및 291km/hr인 경우 후속 객차가 진 입함에 따라 변위의 증폭현상이 발생되고 있다. 즉, 열차의 속도가 280km/hr 이상인 경우 일종 의 공진현상이 발생되는 것으로 확인되었다.

다음 Fig. 20에 나타난 바와 같이 KTX 열차 는 18.7m의 일정한 간격을 갖는 대차들로 지지 되므로, KTX 차량이 주행할 때 교량은 유효타 격간격 18.7m를 갖는 진동을 받게 된다.

이러한 유효타격간격을 가정할 때 열차의 주 행속도별 발생 가능한 가진진동수를 계산하고

Fig. 20 KTX 열차의 유효타격거리

Table 9 속도별 진동수 분석

열차	속도	축간격	통과시간	가진진동수	고유진동수
km/hr	m/sec	(m)	(sec)	(hz)	(Hz)
120	33.33	18.7	0.561	1.783	4.492
160	44.44	18.7	0.421	2.377	4.492
200	55.56	18.7	0.337	2.971	4.492
250	69.44	18.7	0.269	3.714	4.492
270	75.00	18.7	0.249	4.011	4.492
280	77.78	18.7	0.240	4.159	4.492
290	80.56	18.7	0.232	4.308	4.492
302.5	84.03	18.7	0.223	4.493	4.492

이를 고유진동수와 비교한 결과는 다음 Table 9 와 같다. 속도별 가진진동수와 고유진동수를 비

구 분		265km/hr(A)	291km/hr(B)	B/A	설계값(이론값)
처짐(mm)		1.533	2.204	1.4	-
상관 수직가속도(g)		0.101	0.253	2.5	0.350
단부회전각(µrad)	최대	136.83	196.83	1.4	973.7
	최소	-48.89	-132.38	2.7	
종방향 변위(mm)	하연	0.428	0.719	1.7	10.0
	상연	0.157	0.318	2.0	10.0

Table 10 일반 주행 및 고속 주행 계측값 비교

교한 결과, 문곡교 1경간 단순구간 및 2경간 연 속구간의 고유진동수는 4.492Hz로 열차의 주행 속도가 302.5km/hr에서 가진진동수와 고유진동 수가 거의 일치하여 최대 공진이 발생될 것으로 판단되며 금회 계측결과 실제로 고유진동수와 가진동수가 비슷한 280km/hr 이상 운행시 공진 에 의한 변위의 증폭현상이 발생된 것으로 나타 났다.

열차가 280km/hr 이상으로 고속주행 시 공진 에 의한 처짐의 증폭에 따라 단부회전각 및 종방 향 변위도 증가하였으며, 상판의 수직가속도도 속도 증가에 따라 크게 증가하였다. 다음 Table 10에는 공진현상이 발생되기 전후인 열차속도 265km/hr인 경우와 291km/hr인 경우의 계측 값이 제시되어 있다. 이를 고찰하면 공진효과로 인해 열차 통과 후 처짐이 1.4배 증가, 상판 수 직가속도 2.5배 증가, 단부회전각 1.4배/2.7배 (최대/최소) 증가, 종방향 변위 1.7배/2.0배(하 연/상연) 증가한 것으로 나타났다. 그러나, 외관 상태에 대한 점검 결과 처짐으로 인한 구조적인 손상이 발생되지 않았고 상판 수직가속도, 단부 회전각, 종방향 변위 모두 설계조건을 만족하고 있어 열차 운행 시 금회 계측된 고속주행시 공진 현상으로 인한 속도 제한 등의 조치는 필요하지

않을 것으로 판단된다.

5. 결 론

경부고속선 교량 정밀안전진단 시 재하시험을 통해서 기존에 교량에서 실시해온 정·동적 재 하시험과 더불어 열차 운행 시 발생할 수 있는 한계조건(종방향 변위, 비틀림 각변화 등)에 대 한 계측을 실시하였으며 설계에서 제시된 이론 값과 실제 교량 거동상태를 비교·분석하였다. 이 결과는 향후 고속선 교량 설계 및 유지관리시 교량의 거동을 이해하는 자료로 활용될 수 있을 것으로 판단된다.

참고문헌

- 1. 고속철도 설계기준 노반편(2005. 9 한국철도시설 공단)
- 2. ERRI D214 RP9(European Rail Reserch Institute, 1999)
- 3. UIC 규정에 근거한 bridge design manual(1995. 5 Systra)

담당 편집위원: 진남희 ((재)한국건설품질연구원 기술이사) nhjin70@hanmail.net