DOI QR코드

DOI QR Code

Silicon Uptake Level of Six Potted Plants from a Potassium Silicate-supplemented Hydroponic Solution

규산칼륨 첨가 양액으로부터 6가지 분식물의 규소 흡수도

  • Son, Moon Sook (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Song, Ju Yeon (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Lim, Mi Young (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University) ;
  • Sivanesan, Iyyakkannu (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kim, Gui Soon (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University)
  • 손문숙 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과) ;
  • 송주연 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과) ;
  • 임미영 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과) ;
  • ;
  • 김귀순 (경상대학교 농업생명과학연구원) ;
  • 정병룡 (경상대학교 대학원 응용생명과학부(BK21 Program) 원예학과)
  • Received : 2012.08.01
  • Accepted : 2012.12.18
  • Published : 2013.04.30

Abstract

This research was carried out to investigate silicon (Si) uptake levels by six potted plant species from a nutrient solution supplemented with $K_2SiO_3$. Uniform rooted plants of Dendranthema grandiflorum Ramat., Spathiphyllum patinii N.E. BR., Kalanchoe blossfeldiana, Hedera helix L., Dianthus caryophyllus L., and Euphorbia pulcherrima Willd. were grown in 350 mL boxes, one plant per box, containing a nutrient solution supplemented with either 0, 2.7, or 5.4 mM Si as $K_2SiO_3$. The nutrient solution in each container was adjusted to EC $1.5mS{\cdot}cm^{-1}$ and pH 5.6. The solution in each container was aerated by an 1 m-long polyethylene tube, all connected to a vacuum pump. After 15 days of cultivation in a glasshouse Si contents in the roots and shoots were measured using the colorimetric molybdate method and amount of remaining Si in the nutrient solution was measured using the ICP-AES to calculate the amount of absorption. A simple regression analysis was performed to observe the changes in Si contents in the roots and shoots as affected by concentration of Si supplied to the solution. Among the six species tested, carnation had the greatest and poinsettia the lowest tissue levels of Si concentration in the root, whereas carnation had the greatest and kalanchoe the lowest tissue levels of Si concentration in the shoot. Based on the Si content in the whole plant, Si uptake levels by poinsettia, kalanchoe, and chrysanthemum were low, whereas those by spathiphyllum were intermediate, and those of English ivy and carnation were high. These results indicated that the uptake level of Si by the plant vary depending on plant species.

본 실험은 인공배지가 담긴 용기에서 재배되는 6가지 분식물의 지상부와 지하부에 흡수된 규소의 양과 각 양액에 첨가된 규소의 농도에 따른 흡수 경향을 구명하고자 수행되었다. 화훼농가에서 주로 재배되고 있는 분식물 중에서 국화, 스파티필럼, 칼랑코에, 아이비, 카네이션, 그리고 포인세티아를 선정하고 균일한 묘를 선별하여 350mL 마젠타 박스에서 재배하면서 $K_2SiO_3$를 이용하여 Si를 0, 2.7 또는 5.4mM 농도로 첨가하였다. 각 마젠타 박스에 에어펌프에 1m 길이의 polyethylene 튜브를 연결하여 전체 실험기간 동안 $2L{\cdot}h^{-1}$(노즐당 $143mL{\cdot}h^{-1}$)로 양액에 통기하면서 재배하였다. 양액의 EC는 $1.5mS{\cdot}cm^{-1}$로, pH는 5.6으로 실험 시작 전에 조정하였다. 모든 환경 조건이 동일한 조건에서 재배한 작물을 15일째에 수확하여 지하부와 지상부의 규소 함량을 몰리브덴청법을 이용하여 측정하였다. 이를 바탕으로 규소 흡수 정도와 농도에 따른 규소 함량 변화를 알아보기 위해 단순회귀분석을 통해 검정하였으며, 양액 내에 남아 있는 규소 함량은 ICP-AES을 이용하여 측정하였다. 6가지 분식물 중 지하부의 규소 함량은 카네이션에서 가장 높고 포인세티아에서 가장 낮았다. 그리고 지상부의 규소 함량은 카네이션에서 가장 높았고 칼랑코에에서 가장 낮았다. 지상부와 지하부를 합친 식물체의 총규소 함량은 포인세티아, 칼랑코에 및 국화 는 규소 흡수 정도가 낮았고, 스파티필름은 중간 그리고 아이비와 카네이션은 높게 나타났다. 본 연구의 결과에서 규소 흡수 정도는 식물마다 달랐고 회귀분석이 식물에 따라 다양하게 나타났다.

Keywords

References

  1. Epstein, E. 1999. Silicon. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50:641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  2. Frants, J.M., J.C. Locke, L. Datnoff, M. Omer, and A. Widring. 2008. Detection, distribution, and quantification of silicon in floricultural crops utilizing three distinct analytical methods. Comm. Soil Sci. Plant Anal. 39:2734-2751. https://doi.org/10.1080/00103620802358912
  3. Hwang, S.J., H.-M. Park, and B.R. Jeong. 2005. Effect potassium silicate on the growth of miniature rose 'Ponocchio' grown on rockwool and its cut flower quality. J. Japan. Soc. Hort. Sci. 74:242-247. https://doi.org/10.2503/jjshs.74.242
  4. Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stress. Soil Sci. Plant Nutr. 50:11-18. https://doi.org/10.1080/00380768.2004.10408447
  5. Ma, J.F. and E. Takahashi. 2002. Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam.
  6. Mattson, N.S. and W.R. Leatherwood. 2010. Potassium silicate drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat based substrate. HortScience 45:1-5.
  7. Mitani, N. and J.F. Ma. 2005. Uptake system of silicon in different plant species. J. Expt. Bot. 56:1255-1261. https://doi.org/10.1093/jxb/eri121
  8. Miyake, Y. and E. Takahashi. 1978. Silicon deficiency of tomato plant. Soil Sci. Plant Nutr. 24:175-189. https://doi.org/10.1080/00380768.1978.10433094
  9. Moon, H.H., M.J. Bae, and B.R. Jeong. 2008. Effect of silicate supplemented to medium on rooting of cutting and growth of chrysanthemum. Flower Res. 6:93-169.
  10. Rougphael, Y., M. Cardarelli, E. Rea, and G. Colla. 2008. Comparison of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions. Agric. Water Mangt. 82:99-117.
  11. Silber, A., A. Bar-Tai, I. Levkovitch, M. Bruner, H. Yehezkel, D. Shmuel, S. Cohen, E. Matan, L. Karni, H. Aktas, E. Turhan, and B. Aloni. 2009. Manganese nutrition of peper (Capsicum annuum L.): Growth, Mn uptake and fruit disorder incidence. Sci. Hort. 123:197-203. https://doi.org/10.1016/j.scienta.2009.08.005
  12. Taber, H.G., S. Diane, and G. Lu. 2002. Extraction of silicon from plant tissue with dilute HCL and HF and inductive coupled argon plasma procedures. Comm. Soil Sci. Plant Anal. 33:1661-1670. https://doi.org/10.1081/CSS-120004306
  13. Takahashi, E., J.F. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem. 2:90-122.