DOI QR코드

DOI QR Code

Low Velocity Impact Behavior of Aluminium and Glass-Fiber Honeycomb Structure

알루미늄과 유리섬유 하니컴 구조의 저속 충격 거동

  • 김진우 (창원대학교 기계공학과 대학원) ;
  • 원천 (창원대학교 기계공학과 대학원) ;
  • 이동우 (창원대학교 기계공학과 대학원) ;
  • 김병선 (한국기계연구원 재료연구소) ;
  • 배성인 (창원대학교 기계공학과 기계공학전공) ;
  • 송정일 (창원대학교 기계공학과 기계공학전공)
  • Received : 2012.12.05
  • Accepted : 2013.01.22
  • Published : 2013.04.30

Abstract

In this study, impact behavior of aluminium and glass-fiber structure is studied under low impact velocity. Compression test is carried out to investigate the compressive strength of the specimens. The degree of damage is observed using microscopy and compared with the experimental analysis data. The maximum load capacity, impact strength and elastic energy of glass-fiber honeycomb sandwich panel are more than the aluminium honeycomb sandwich panel.

본 연구는 동일한 코어재를 가지는 알루미늄과 유리섬유의 하니컴 샌드위치 판넬의 저속 충격시 발생하는 충격 거동 및 압축 실험을 통하여 압축 강도와 압축 계수를 살펴본다. 저속 충격을 받는 하니컴의 충격 거동을 살펴보기 위하여 중량 낙하식 충격 시험을 실시하며, 충격을 가한 후 데이터 분석 및 현미경을 통하여 전형적인 충격파손모드와 손상정도를 비교 평가하였다. 동일한 충격에너지일 때 유리섬유 하니컴 샌드위치 판넬이 알루미늄 하니컴 샌드위치 판넬보다 최대 하중이 높고, 탄성 에너지가 크며, 충격 강도가 높은 것을 확인할 수 있었다.

Keywords

References

  1. Jang, H.K., "Development of Nondestructive Evaluation Techniques for Honeycomb Sandwich Structure (I)," Korea Institute of Machinery and Materials, 1990, pp. 19-33.
  2. Lee, S.K., Jo, J.D., Jo, J.W., and Bang, S.W., "In-plane Characteristics of Al Foam Core and Al Honeycomb Core Sandwich Composites with an Indented Damage," Korean Society for Composite Materials, 2011, pp. 226-227.
  3. Kong, C.D., Bak, H.B., and Lee, S.H., "A Study on Residual Strength of Carbon/Epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Quasi Static Indentation Damage," Journal of Korean Society for Composite Materials, Vol. 22, No. 2, 2009, pp. 24-29.
  4. Song, J.I., and Bae, S.I., "Low-velocity Impact Behavior of Aluminium Honeycomb Sandwich Panel," Engineering Research and Technology, Vol. 3, 2003, pp. 69-77.
  5. Lee, I.T., Shi, Y., Afsar, A.M., Ochi, Y., Bae, S.I., and Song, J.I., "Low Velocity Impact Behavior of Aluminum Honeycomb Structures," Advanced Composite Materials, Vol. 19, 2010, pp. 19-39. https://doi.org/10.1163/156855109X434810
  6. Santosa, S., and Wierzbicki, T., "Crash Behavior of Box Columns Filled with Aluminum Honeycomb or Foam," Computers & Structures, Vol. 68, 1998, pp. 343-367. https://doi.org/10.1016/S0045-7949(98)00067-4
  7. Kwon, S.C., Im, C.M., Choi, B.K., Lee, S.W., Han, J.W., and Kim, Y.H., "A Study on the Analysis of Causes & Minimizing of Defects at Composite Materials Sandwich Aircraft Structure in Autoclave Processing," Journal of the Korean Society for Composite Materials, Vol. 14, No. 1, 2001, pp. 22-29.
  8. Reddy, T.Y., Wen, H.M., Reid, S.R., and Soden, P.D., "Penetration and Perforation of Composite Sandwich Panels by Hemispherical and Conical Projectiles," Journal of Pressure Vessel Technology, Vol. 120, 1998, pp. 186-194. https://doi.org/10.1115/1.2842239
  9. Johnson, W., "Impact Strength of Materials," Edward Arnold, London, 1972, pp. 138-146.
  10. Liming Honeycomb Composites Co., Ltd., www.hycomb.cn.
  11. Thwaites, S., and Clark, N.H., "Non-destructive Testing of Honeycomb Sandwich Structures Using Elastic Wave," Journal of Sound and Vibration, Vol. 187, No. 2, 1995, pp. 253-269. https://doi.org/10.1006/jsvi.1995.0519

Cited by

  1. Characteristics of the Human Strength Acting on the Lightweight Wall of Buildings vol.15, pp.5, 2015, https://doi.org/10.5345/JKIBC.2015.15.5.473