Abstract
A personalized recommendation system is a recommendation system that recommends goods to users' taste by using an automated information filtering technology. A collaborative filtering method in this technology is a method that discriminates certain types, which represent similar patterns. Thus, it is possible to estimate the pain strength based on the data of the patients who have the past similar types and extract related conditions according to the similarity in classified patients. A representative method using the Pearson correlation coefficient for extracting the similarity weight may represent inexact results as the sample data is small according to the amount of data. Also, it has a disadvantage that it is not possible to fast draw results due to the increase in calculations as a square scale as the sample data is large. In this paper, the excellency of the intelligence pain nursing intervention u-health system implemented by comparing the scale and similarity group of the sample data for extracting significant data is verified through the evaluation of MAE and Raking scoring. Based on the results of this verification, it is possible to present basic data and guidelines of the pain of patients recognized by nurses and that leads to improve the welfare of patients.
개인화 추천 시스템은 자동화된 정보 필터링 기술을 적용하여 사용자의 취향에 맞는 상품을 추천해 주는 시스템이다. 이러한 기술 중 협력적 필터링은 비슷한 패턴을 가진 형태들을 식별해 내는 기법이다. 따라서 이를 이용하면 과거 유사한 형태를 가진 환자의 자료를 통하여 통증 강도를 유추 하거나 분류된 환자의 프로필의 유사도에 따라 관련 사정을 추출하는 것이 가능하게 된다. 유사도 가중치 추출의 대표적인 방법인 피어슨 상관계수를 사용하는 방법은 데이터의 양에 따라 표본 데이터가 적은 경우 예측 값이 부정확해지고 양이 방대한 경우 계산량이 제곱으로 늘어 신속한 결과를 추출할 수 없게 되는 단점이 있다. 본 논문에서는 MAE와 순위 스코어를 사용하여 의미있는 데이터를 추출하기 위한 표본 자료의 규모와 유사도 군집량을 비교하여 구현된 지능형 통증 간호중재 유헬스 시스템의 우수성을 확인하였다. 이를 통하여 통증환자의 고통호소를 간호사가 신속하게 파악할 수 있도록 기초자료와 가이드라인을 제공하게 되고, 따라서 환자의 안위 증진이 향상되게 된다.