DOI QR코드

DOI QR Code

Study on the Selection Model CTQ data

CTQ 데이터 선정 모델에 관한 연구

  • Kim, Seung-Hee (Graduate School of Public Policy and Information Technology, Seoul National University of Science and Technology) ;
  • Kim, Woo-Je (School of Global Convergence of Industrial Engineering, Seoul National University of Science and Technology)
  • 김승희 (서울과학기술대학교 IT정책전문대학원 산업정보시스템전공, 한국토지주택공사) ;
  • 김우제 (서울과학기술대학교 기술경영융합대학 글로벌융합산업공학과)
  • Received : 2013.02.12
  • Accepted : 2013.04.04
  • Published : 2013.04.30

Abstract

The quality of the data is the most basic prerequisite for effective use of data. Problems and the resulting loss due to error data has emerged using case studies and a number of, to a national, quality certification system of the data has been enforced, you must manage to generate data study on the method for selecting the point of view of an organization's data CTQ is a very unsatisfactory state of affairs. Selected CTQ main data is subject to quality control in the organization, to develop criteria for CTQ data side of the business and IT so that it can be managed in a systematic manner, the proposed model, to filter the data accordingly presented in detail how to manage enterprise-wide CTQ data that can be quantified Te. By utilizing SPSS, factor analyzes, for which I used the AHP method for quantification. In particular, we present a framework of management measures along the maturity of the data in the organization due to the enforcement of authentic quality certification system of DB, utilizing the CTQ-DSMM model readily applicable to practice.

데이터의 품질은 효율적인 데이터 활용을 위한 가장 기본적인 전제이다. 수많은 연구와 사례를 통해 오류 데이터로 인한 손실과 그로 인한 문제점들이 대두되고 있고, 국가적으로는 데이터 품질 인증제도가 시행되고 있으나 데이터를 생성하고 관리해야 하는 조직 관점의 CTQ 데이터 선정 방법에 대한 연구는 극히 미흡한 상황이다. 본 모델은 조직에서 품질관리 대상이 되는 주요 CTQ 데이터를 선정하여 체계적으로 관리할 수 있도록 업무 및 IT측면의 CTQ 데이터의 기준을 수립하고 그에 따라 데이터를 선별하여 계량화 할 수 있게 있는 전사적 규모의 CTQ 데이터 관리 방법을 구체적으로 제시하였다. 이를 위해 SPSS를 활용하여 요인분석을 수행하고, 계량화를 위해 AHP 방법론을 사용하였다. 특히, DB 품질인증제도의 본격 시행에 따라 실무 적용에 용이하도록 CTQ-DSMM 모델을 활용한 조직 내 데이터 성숙도 관리 방안의 틀도 함께 제시하였다.

Keywords

References

  1. Jae-Seob Lee et al., "A Feasibility Analysis of Integrated Project Delivery by MAUT-AHP in Public Construction Projects", 2010.
  2. Korea Database Agency, "Data quality management guidelines", 2011.
  3. Changhwan Lee, "A pleasant change, depends on the quality challenge", I Love Six Sigma, POSCO, pp. 10-11, 2004.
  4. MiYoung Park, Hyon-Woo Seung, "A Selection Method of Database System Quality Characteristics Using the Analytic Hierarchy Process", 2009.
  5. Korea Database Agency, "Guideline for the management of data quality", 2010.
  6. Korea Database Agency, "Data Quality Management Maturity Model", 2010.
  7. Korea Database Agency, "Process-based data quality master courses", 2012.
  8. Chan Soo KIM, Joo Seok Park, "A Study of Data Quality Management Maturity Model", 2003.
  9. Hcsong, Cwkang, "A Study on the Data Architecture Implementation and the Evaluation Method of Quality Indicator", 2010.
  10. IEEE-1471, "Recommended Practice for Architectural Description of Software-Intensive Systems", 2000.
  11. Richard Y. Wang AND Diane M. Strong. "A conceptual framework of data quality (Beyond Accuracy : What Data Quality Means to Data Consumers)", Journal of management information systems, 1996.
  12. Zachman John, "A Framework for Information System Architecture", IBM System Journal V.26 No.3, pp.276-292, 1987. https://doi.org/10.1147/sj.263.0276
  13. Thomas. C. R., "The Impact of Poor Data Quality on the Typical Enterprise", Communications of the ACM, Vol. 41. No. 2, February, pp.79-82, 1998. https://doi.org/10.1145/269012.269025
  14. Ballou. D. P. And Pazer. H., "Modeling Data and Process Quality in Multi-input. Multi-output Information System". Management Science, Vol. 31. No 2. February, pp.150-162, 1985. https://doi.org/10.1287/mnsc.31.2.150
  15. Wang. R. Y. and Strong D. M., "Beyond Accuracy : what Data Quality Means to Data consumers", Journal of Management Information Systems, Vol 12, No. 4, Spring, pp.623-640, 1996.
  16. Korea Database Agency, "Data quality management practices", 2011.
  17. byeongho Jeun, byeonggoo Kang, "Effects of Information Quality on Customer Satisfaction and Continuous Intention to buy in Social Commerce", Journal of The Korea Society of Computer and Information
  18. Sunngho Shin et al., "A data cleansing strategy for improving data quality of National R&D Information - Case study of NTIS", Journal of The Korea Society of Computer and Information, Vol.16 No.6, pp.119-130, 2011
  19. DB domestic quality management maturity yet introduced step, http://www.itdaily.kr/news/articleView.htm
  20. The Essentials of Information QualityManagement, http://www.information-management.com/issues/20020901/5690-1.htm
  21. Database Quality Management, http://www.dqc.or.kr