DOI QR코드

DOI QR Code

산업연관분석을 활용한 물발자국 인벤토리 개발

Development of Water Footprint Inventory Using Input-Output Analysis

  • 김영득 (한국농어촌공사 농어촌연구원) ;
  • 이상현 (서울대학교 지역시스템공학과) ;
  • ;
  • 이성희 (한국농어촌공사 농어촌연구원)
  • Kim, Young Deuk (Rural Research Institute, Korea Rural Community Corporation) ;
  • Lee, Sang Hyun (Seoul National University) ;
  • Ono, Yuya (Faculty of Environmental and Information Studies, Tokyo City University) ;
  • Lee, Sung Hee (Rural Research Institute, Korea Rural Community Corporation)
  • 투고 : 2012.12.06
  • 심사 : 2013.01.07
  • 발행 : 2013.04.30

초록

물발자국은 제품과 서비스를 생산하는데 전과정 혹은 전체 공급망에서 사용된 담수의 양을 나타낸다. 물발자국 평가는 인간의 활동과 관련된 물의 희소성 및 오염과 관련된 정보를 파악하는데 보다 많은 정보를 주기 때문에 물소비관점에서 지속가능한 물관리에 기여할 수 있을 것으로 기대된다. 물발자국 제도의 도입을 위해서 물발자국 데이터베이스/물계정이 필수적인데 국내에서 전 산업부분에 적용할 수 있는 DB가 전무하다. 따라서 이 연구의 목적은 산업연관분석법을 이용해 국내의 403개 산업분야에 대한 물발자국 인벤토리를 개발하는 것이다. 주요 연구결과로는 농업분야의 물사용량이 전체 직접수의 79%를 차지하며, 공업분야는 간접수의 사용량이 82%로 주를 이루는 것으로 분석되었다. 물사용량은 벼가 가장 많지만, 다음은 수산양식과 과일 생산으로 조사되었고, 가장 물사용강도($m^3$/원)가 높은 것은 비식용작물(103,263 $m^3$/백만원)로 분석되었고, 이와 같은 결과는 비식용작물(초지생산등)의 직접수는 많지만 경제적 가치가 매우 낮아 높은 물사용강도를 보여주고 있다. 다음은 육림, 철광석, 원목, 수산양식, 상수도, 잡곡 등의 순으로 물사용 강도가 높게 나타났다. 전체적 관점에서 총 물사용량중56%가 간접수가 차지하기 때문에 간접수를 고려한 산업분야의 수자원관리, 즉 공급망에서 전과정을 고려한 관리가 물사용 효율성을 높이는데 중요하다는 것을 알 수 있다. 전과정 개념과 산업연관분석법을 이용한 물사용강도 자료는 물발자국 도입시 제품단위 물발자국 산정의 기초 인벤토리로 이용될 수 있을 것으로 기대된다.

Water footprint of a product and service is the volume of freshwater used to produce the product, measured in the life cycle or over the full supply chain. Since water footprint assessment helps us to understand how human activities and products relate to water scarcity and pollution, it can contribute to seek a sustainable way of water use in the consumption perspective. For the introduction of WFP scheme, it is indispensable to construct water inventory/accounting for the assessment, but there is no database in Korea to cover all industry sectors. Therefore, the aim of the study is to develop water footprint inventory within a nation at 403 industrial sectors using Input-Output Analysis. Water uses in the agricultural sector account for 79% of total water, and industrial sector have higher indirect water at most sectors, which is accounting for 82%. Most of the crop water is consumptive and direct water except rice. The greatest water use in the agricultural sectors is in rice paddy followed by aquaculture and fruit production, but the greatest water use intensity was not in the rice. The greatest water use intensity was 103,263 $m^3$/million KRW for other inedible crop production, which was attributed to the low economic value of the product with great water consumption in the cultivation. The next was timber tract followed by iron ores, raw timber, aquaculture, water supply and miscellaneous cereals like corn and other edible crops in terms of total water use intensity. In holistic view, water management considering indirect water in the industrial sector, i.e. supply chain management in the whole life cycle, is important to increase water use efficiency, since more than 56% of total water was indirect water by humanity. It is expected that the water use intensity data can be used for a water inventory to estimate water footprint of a product for the introduction of water footprint scheme in Korea.

키워드

참고문헌

  1. Allan, J.A. (1993). "Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible." ODA, Priorities for water resources allocation and management, ODA, London, pp. 13-26.
  2. Allan, J.A. (1994). "Overall perspectives on countries and regions."Water in the Arab World: perspectives and prognoses, edied by Rogers, P., & Lydon, P., Harvard University Press, Cambridge, Massachusetts, pp. 65-100.
  3. Blackhurst, M., Hendrickson, C., and Vidal, J.S.I. (2010). "Direct and indirect water withdrawals for U.S. industrial sectors." Environmental Science and Technology, Vol. 44, No. 6, pp. 2126-2130. https://doi.org/10.1021/es903147k
  4. BOK (2008). 2005 Input-Out tables
  5. Choi, G.W. (2007). Interpretation of potential discharge for Maintenance flow in a catchment. pp. 231-232.
  6. FAO (2009). FAO Aquastat on-line database.
  7. Hoekstra, A.Y. (2002). "Virtual water." Proceedings of the International Expert Meeting on Virtual Water Trade. Research Report Series No. 12, the Netherlands.
  8. Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., and Mekonnen, M.M. (2011).Water Footprint Assessment Manual: Setting the Global Standard. Earthscan, Cornwall, UK, p. 2, 131-146
  9. ISO (2006). ISO 14044: Environmental Management - Life Cycle Assessment-requirement and guidelines.
  10. Joo, S.U. (2010). Study on water footprint between interindustry in Korea using an input-output analysis. MSc dissertation, The University of Suwon, pp. 20-28.
  11. Kobayashi, Y. (2008). "An estimation of embodied intensity of water consumption in Japan based on inputoutput analysis method." Journal of Life Cycle Assessment, Japan, Vol. 4, No. 4, pp. 359-366. https://doi.org/10.3370/lca.4.359
  12. KSO (2004). 2003 Industry Census report.
  13. Lee, S.H., Kim, Y.D., and Yun, D.G. (2012). "From virtual water, to Water footprint (2/1)."Water for the Future, Vol. 45, No. 7, pp. 49-59.
  14. Lenzen, M. (2008). The virtual water trust. Report on Virtual water cycle of Victoria. GHD.
  15. Lovelace, J.K. (2009). Methods for estimating water withdrawals for aquaculture in the United States 2005. Reston, Virginia, USA.
  16. Ma, J., and Wang, H. (2005). "Virtual versus real water transfers within China." Philosophical Transactions, Vol. 36, No. 1, pp. 835-842.
  17. Maria, L. (2008). "Economic impact of alternative water policy scenarios in the Spanish production system: An input-output analysis." Ecological Economics, Vol. 68, No. 1-2, pp. 288-294, 200. https://doi.org/10.1016/j.ecolecon.2008.03.002
  18. Maruyama, T., and Riota, N. (1998). Water Supply Environmental Engineering. Asakura Shoten, Tokyo, Japan.
  19. Mekonnen, M.M., and Hoekstra, A.Y. (2010). The green, blue and grey water footprint of crops and derived crop products. Value of Water Research Report Series, No. 47, the Netherlands.
  20. Mekonnen, M.M., and Hoekstra, A.Y. (2011). "The green, blue and grey water footprint of crops and derived crop products." Hydrol. Earth Syst. Sci., Vol. 15, pp. 1577-1600. https://doi.org/10.5194/hess-15-1577-2011
  21. Mellon, C. (2009). Theory and Method behind EIO-LCA: EIO-LCA(Economic Input Output Life Cycle Assessment), http://www.eiolca.net/Method/eio-lca-method.html accessed 10 November 2012.
  22. MLTM (2012). 4th Water plan in Korea-2nd revision (2011-2020). p. 18, 93.
  23. MLTM and K-water (2011). 2011 Water for the future. p. 1.
  24. MOCT (2006). "Integrated water use plan." National Water Resources Plan (2006-2020), pp. 219-386.
  25. MOE (2006). 2005 National Survey on Pollution Sources
  26. Mountford, H. (2011).Water: The Environmental Outlook to 2050 OECD Global Forum on Environment: Making Water Reform Happen, 25-26 October 2011
  27. Ono, Y. (2010). The development of water inventory database for the application to water footprint. MSc thesis, Tokyo City University, Yokohama, pp. 10-55.
  28. Park, P.J., Kim, M.Y., and Lee, I.S. (2009). "Analysis of CO2 Emission Intensity per Industry using the Input- Output Tables 2003." Environment and Resources Economics Review, Vol. 18, No. 2, pp. 279-309.
  29. Vela'zquez, E. (2006). "An input-output model of water consumption: Analyzing inter sectoral water relationships in Andalusia." Ecological Economics, Vol. 56, No. 2, pp. 226-240. https://doi.org/10.1016/j.ecolecon.2004.09.026
  30. Won, H.G., Kim, Y.H., Jang, K.M., Kim, C.M., and Lee, K.H. (2011). Management of economic forest and model for long-term management plan. Korea Forest Research Institute, pp. 59-62.
  31. Yamaoka, K. (2005). "Paddy field characteristics in water use experience in Asia." OECD Workshop on Water and Agriculture Sustainability, Markets and Policies, Adlaide, Australia, 14-18 November 2005, pp. 287-314.
  32. Yoo, S.H., Choi, J.Y., and Jang, M.W. (2008). "Estimation of design water requirement using FAO Penman- Monteith and optimal probability distribution function in South Korea." Agricultural Water Management, Vol. 95, pp. 845-853. https://doi.org/10.1016/j.agwat.2008.02.010
  33. Yoo, S.H., Choi, J.Y., Nam, W.H., and Hong, E. (2012). "Analysis of design water requirement of paddy rice using frequency analysis affected by climate change in South Korea." Agricultural Water Management, Vol. 112, pp. 33-42. https://doi.org/10.1016/j.agwat.2012.06.002
  34. Zhao, X. (2009). "National water footprint in an inputoutput framework-A case study of China 2002." Ecological Modelling, Vol. 220, No. 2, pp. 245-253. https://doi.org/10.1016/j.ecolmodel.2008.09.016

피인용 문헌

  1. Regional Analysis of Virtual Water Flow in View of Crop Consumption vol.65, 2016, https://doi.org/10.1002/ird.2066
  2. A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table vol.9, pp.8, 2017, https://doi.org/10.3390/su9081351