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OPTIMISTIC LIMITS OF THE COLORED JONES

POLYNOMIALS

Jinseok Cho and Jun Murakami

Abstract. We show that the optimistic limits of the colored Jones poly-

nomials of the hyperbolic knots coincide with the optimistic limits of the
Kashaev invariants modulo 4π2.

1. Introduction

1.1. Preliminaries

Kashaev conjectured the following relation in [5]:

vol(L) = 2π lim
N→∞

log |〈L〉N |
N

,

where L is a hyperbolic link, vol(L) is the hyperbolic volume of S3−L, and 〈L〉N
is the N -th Kashaev invariant. After, a generalized conjecture was proposed
in [12] that

i(vol(L) + i cs(L)) ≡ 2πi lim
N→∞

log〈L〉N
N

(mod π2),

where cs(L) is the Chern-Simons invariant of S3 − L defined in [7].
The calculation of the actual limit of the Kashaev invariant is very hard,

and only several cases are known. On the other hand, while proposing the
conjecture, Kashaev used a formal approximation to predict the actual limit.
His formal approximation was formulated as optimistic limit by H. Murakami
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in [9]. This method can be summarized in the following way. First, we fix an
expression of 〈L〉N , then apply the following formal substitution

(q)k ∼ exp

{
N

2πi

(
−Li2(qk) +

π2

6

)}
,(1)

(q−1)k ∼ exp

{
N

2πi

(
Li2(q−k)− π2

6

)}
,

qkl ∼ exp

{
N

2πi

(
log qk · log ql

)}
,

to the expression, where q = exp(2πi/N), Li2(z) = −
∫ z
0

log(1−t)
t dt for z ∈ C,

[k] is the residue of an integer k modulo N , (q)k =
∏[k]
n=1(1− qn) and (q)0 = 1.

Then by substituting each qk with a complex variable z, we obtain a potential
function exp

{
N
2πiF (. . . , z, . . .)

}
. Finally, let

F0(. . . , z, . . .) := F −
∑
z

(
z
∂F

∂z

)
log z

and evaluate F0 for an appropriate solution of the equations
{

exp
(
z ∂F∂z

)
= 1
}

.
Then the resulting complex number is called the optimistic limit.

For example, the optimistic limit of the Kashaev invariant of the 52 knot
was calculated in [5] and [13] as follows. By the formal substitution,

〈52〉N =
∑
k≤l

(q)2l
(q−1)k

q−k(l+1)

∼ exp

{
N

2πi

(
−2Li2(ql)− Li2(

1

qk
)− log ql log qk +

π2

2

)}
.

By substituting z = ql and u = qk, we obtain

F (z, u) = −2Li2(z)− Li2(
1

u
)− log z log u+

π2

2
,

and

F0(z, u) = F (z, u)−
(
z
∂F

∂z

)
log z −

(
u
∂F

∂u

)
log u.

For the choice of a solution (z0, u0) = (0.3376 · · · − i 0.5623 · · · , 0.1226 · · · +
i 0.7449 · · · ) of the equations

{
exp

(
z ∂F∂z

)
= 1, exp

(
u∂F∂u

)
= 1
}

, the optimistic
limit becomes

F0(z0, u0) = i (2.8281 · · · − i 3.0241 · · · ) ≡ i(vol(52) + i cs(52)) (mod π2).

As seen above, the optimistic limit depends on the expression and the choice
of the solution, so it is not well-defined. However, Yokota made a very useful
way to determine the optimistic limit of a hyperbolic knot K in [17] and [18]
by defining a potential function V (z1, . . . , zg) of the knot diagram, which also
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comes from the formal substitution of certain expression of the Kashaev in-
variant 〈K〉N (the definition of V (z1, . . . , zg) will be given in Section 3.1). As
above, he also defined

V0(z1, . . . , zg) := V −
g∑
k=1

(
zk
∂V

∂zk

)
log zk

and

H1 :=

{
exp(zk

∂V

∂zk
) = 1 | k = 1, . . . , g

}
.

After proving that H1 is the hyperbolicity equation of Yokota triangulation, he

chose the geometric solution z(0) = (z
(0)
1 , . . . , z

(0)
g ) of H (Yokota triangulation

will be discussed in Section 2.1. The hyperbolicity equation consists of edge
relations and the cusp conditions of a triangulation, and the geometric solution
is the one which gives the hyperbolic structure of the triangulation. Details are
in Section 4). Then he proved

(2) V0(z(0)) ≡ i(vol(K) + i cs(K)) (mod π2)

in [18]. Therefore, we denote

2πi o-lim
N→∞

log〈K〉N
N

:= V0(z(0))

and call it the optimistic limit of the Kashaev invariant 〈K〉N .
To obtain (2), Yokota assumed several assumptions on the knot diagram

and the existence of an essential solution of H1. The assumptions on the
diagram essentially reduce redundant crossings of the diagram before finding
the potential function V . Exact statements are Assumption 1.1–1.4. and
Assumption 2.2. in [18]. We remark that these assumptions are needed so
that, after the collapsing process, Yokota triangulation becomes a topological
triangulation of the knot complement S3 −K (see Section 3.1 for details).

As mentioned before, the set of equations H1 becomes the hyperbolicity
equation of Yokota triangulation. Therefore, each solution z = (z1, . . . , zg) of
H1 determines the shape parameters of the ideal tetrahedra of the triangulation
and the parameters are expressed by the ratios of z1, . . . , zg (details are in
Section 4). We call a solution z of H1 essential if no shape parameters are
in {0, 1,∞}, which implies no edges of the triangulation are homotopically
nontrivial. A well-known fact is that if the hyperbolicity equation has an
essential solution, then there is a unique geometric solution z(0) of H1 (for
details, see [16, Section 2.8]). Therefore, to guarantee the existence of the
geometric solution, Yokota assumed the existence of an essential solution.

On the other hand, it is proved in [11] that

JL(N ; exp
2πi

N
) = 〈L〉N ,

where JL(N ;x) is the N -th colored Jones polynomial of the link L with a
complex variable x. Therefore, it is natural to define the optimistic limit of
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the colored Jones polynomial so that it gives the volume and the Chern-Simons
invariant. Although it looks trivial, due to the ambiguity of the optimistic limit,
only few results are known. It was numerically confirmed for few examples in
[12], actually proved only for the volume part of two bridge links in [13] and
for the Chern-Simons part of twist knots in [2]. In a nutshell, the purpose of
this paper is to propose a general method to define the optimistic limit of the
colored Jones polynomial of a hyperbolic knot K and to prove the following
relation:

(3) 2πi o-lim
N→∞

log〈K〉N
N

≡ 2πi o-lim
N→∞

log JK(N ; exp 2πi
N )

N
(mod 4π2).

1.2. Main result

For a hyperbolic knot K, we define a potential function W (w1, . . . , wm) of a
knot diagram in Section 3.2, which also comes from the formal substitution of
certain expression of the colored Jones polynomial JL(N ; exp 2πi

N ). We define

W0(w1, . . . , wm) := W −
m∑
l=1

(
wl
∂W

∂wl

)
logwl

and

H2 :=

{
exp

(
wl
∂W

∂wl

)
= 1 | l = 1, . . . ,m

}
.

Also, we discuss Thurston triangulation of the knot complement S3 − K in
Section 2.2, which was introduced in [14].

Proposition 1.1. For a hyperbolic knot K with a fixed diagram, we assume
the diagram satisfies Assumption 1.1.–1.4. and Assumption 2.2. in [18].
For the potential function W (w1, . . . , wm) of the diagram, H2 becomes the hy-
perbolicity equation of Thurston triangulation.

Proof of Proposition 1.1 will be given in Section 4.
Each solution w = (w1, . . . , wm) of H2 determines the shape parameters of

the ideal tetrahedra of Thurston triangulation and the parameters are expressed
by the ratios of w1, . . . , wm (details are in Section 4). We call a solution w
of H2 essential if no shape parameters are in {0, 1,∞}. Comparing Yokota
triangulation and Thurston triangulation, we obtain the following lemma.

Lemma 1.2. For a hyperbolic knot K with a fixed diagram and the assumptions
of Proposition 1.1, an essential solution z = (z1, . . . , zg) of H1 determines the
unique solution w = (w1, . . . , wm) of H2, and vice versa. Furthermore, if the
determined solution w is essential, then w also induces z, and vice versa.

Proof of Lemma 1.2 will be given in Section 5. Although there is a possibility
that an essential solution z of H1 determines a non-essential solution w of H2,
we expect this not to happen in almost all cases (this is discussed in Appendix
A.2). In this paper, we only consider the case when the determined solution w
is essential.
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Theorem 1.3. For a hyperbolic knot K with a fixed diagram, assume the
assumptions of Proposition 1.1. Let V (z1, . . . , zg) and W (w1, . . . , wm) be the
potential functions of the knot diagram. Also assume the hyperbolicity equation

H1 has an essential solution z = (z1, . . . , zg) and let z(0) = (z
(0)
1 , . . . , z

(0)
g ) be

the geometric solution of H1. From Lemma 1.2, let w = (w1, . . . , wg) and

w(0) = (w
(0)
1 , . . . , w

(0)
m ) be the corresponding solutions of H2 determined by z

and by z(0), respectively. We also assume w and w(0) are essential. Then

(1) V0(z) ≡W0(w) (mod 4π2),
(2) w(0) is the geometric solution of H2 and

W0(w(0)) ≡ i(vol(K) + i cs(K)) (mod π2).

The proof is in Section 5. We denote

2πi o-lim
N→∞

log JK(N ; exp 2πi
N )

N
:= W0(w(0))

and call it the optimistic limit of the colored Jones polynomial JK(N ; exp 2πi
N ).

With this definition, Theorem 1.3 implies (3). Also, we obtain the colored
Jones polynomial version of [1, Corollary 1.4] as follows.

Corollary 1.4. For a hyperbolic knot K with a fixed diagram, assume the
assumptions of Proposition 1.1. Let w be an essential solution of H2, w(0) be
the geometric solution of H2, and ρw : π1(S3−K)→ PSL(2,C) be the parabolic
representation induced by w. Also, assume the corresponding solutions z and
z(0) of H1 determined by w and by w(0), respectively, from Lemma 1.2 are
essential. Then

W0(w) ≡ i (vol(ρw) + i cs(ρw)) (mod π2),

where vol(ρw) + i cs(ρw) is the complex volume of ρw defined in [19]. Further-
more, the following inequality holds:

(4) ImW0(w) ≤ ImW0(w(0)) = vol(K).

The equality in (4) holds if and only if w = w(0).

Proof. It is a well-known fact that the hyperbolic volume is the maximal volume
of all possible PSL(2,C) representations and that the maximum happens if and
only if the representation is discrete and faithful (for the proof and details, see
[4]).

From the proof of Lemma 1.2, if w and z are essential, then the shapes of
each (collapsed) octahedra in Figure 2 and Figure 10 of Yokota and Thurston
triangulations coincide. Therefore, these triangulations form the same geo-
metric shape, and the parabolic representation ρw coincides with ρz up to
conjugate, where ρw and ρz are the parabolic representations induced by w
and by z, respectively. This also implies that z(0) is the geometric solution of
H1.
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Yokota proved

V0(z(0)) ≡ i (vol(K) + i cs(K)) (mod π2)

in [18] using Zickert’s formula of [19], but the formula also holds for any para-
bolic representation ρz induced by z. Therefore, Yokota’s proof also implies

V0(z) ≡ i (vol(ρz) + i cs(ρz)) (mod π2).

Among the essential solutions z of H1, only the geometric solution z(0)

induces the discrete faithful representation. Therefore, applying Theorem 1.3,
we complete the proof. �

This paper consists of the following contents. In Section 2, we describe
Yokota triangulation and Thurston triangulation, which correspond to the
Kashaev invariant and the colored Jones polynomial, respectively. We show
that these two triangulations are related by finite steps of 3-2 moves and 4-
5 moves on some crossings. In Section 3, the potential functions V and W
are defined. In Section 4, we explain the geometries of V and W , and prove
Proposition 1.1. In Section 5, we introduce several dilogarithm identities and
complete the proofs of Lemma 1.2 and Theorem 1.3 using these identities. In
Appendix A.1, we show the potential function W defined in Section 3 can be
obtained by the formal substitution of the colored Jones polynomial. Finally,
in Appendix A.2, we investigate the necessary and sufficient condition for an
essential solution of H1 (respectively, H2) to induce the inessential solution of
H2 (respectively, H1).

2. Two ideal triangulations of the knot complement

In this section, we explain two ideal triangulations of the knot complement.
One is Yokota triangulation corresponding to the Kashaev invariant in [18]
and the other is Thurston triangulation corresponding to the colored Jones
polynomial in [14]. A good reference of this section is [10], which contains
wonderful pictures.

2.1. Yokota triangulation

Consider a hyperbolic knot K and its diagram D (see Figure 1(a)). We
define sides of D as arcs connecting two adjacent crossing points. For example,
Figure 1(a) has 16 sides.

Now split a side of D open so as to make a (1,1)-tangle diagram and label
crossings with integers (see Figure 1(b)). Yokota assumed several conditions
on this (1,1)-tangle diagram (for the exact statement, see Assumption 1.1.–
1.4. and Assumption 2.2. in [18]). The assumptions roughly mean that we
remove all the crossing points that can be reduced trivially. Also, let the two
open sides be I and J and consider the orientation from J to I. Assume I
and J are in an over-bridge and in an under-bridge, respectively (over-bridge
is a union of sides, following the orientation of the knot diagram, from one
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(a) Knot

I

J

8

4

7

2

1

6

5

3

(b) (1,1)-tangle

Figure 1. Example

over-crossing point to the next under-crossing point. Under-bridge is the one
from one under-crossing point to the next over-crossing point. The boundary
endpoints of I and J are considered over-crossing point and under-crossing
point, respectively. For example, in Figure 1(b), if we follow the diagram from
the below to the top, the first under-bridge containing J ends at the crossing
2, and the first over-bridge starts at the crossing 2 and ends at the crossing 4.
In total, it has 5 over-bridges and 5 under-bridges. Note that if we change the
orientation, the numbers of over-bridges and under-bridges change).

Now extend I and J so that, when following the orientation of the knot
diagram, non-boundary endpoints of I and J become the last under-crossing
point and the first over-crossing point, respectively, as in Figure 1(b). Then we
assume the two non-boundary endpoints of I and J do not coincide, because, if
they coincide, then we cut other side open and make a different tangle diagram.
Yokota proved in [18] that we can always make two non-boundary endpoints
different by cutting certain side open because, if not, then the diagram should
be that of a link or the trefoil knot (for details, see Assumption 1.3. and the
discussion that follows in [18]).

To obtain an ideal triangulation of the knot complement, we place an ideal
octahedron AnBnCnDnEnFn on each crossing n as in Figure 2(a). We call
the edges AnBn, BnCn, CnDn and DnAn of the octahedron horizontal edges.
Figure 2(b) shows the positions of An, Bn, Cn, Dn and the horizontal edges.
We twist the octahedron by identifying the edges AnEn to CnEn and BnFn
to DnFn as in Figure 2(a) (the actual shape of the resulting diagram ap-
pears in [10]). Then we glue the faces of the twisted octahedron following
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An Bn

CnDn

En

Fn

Bn=Dn

An=Cn

(a) Octahedron on the crossing n

I

J

8

4

7

2

1

6

5

3

A8

A4

A7

A2

C5

A3

A5

A6

A1

C8

C4

C7

C2

C1

C6

C3

B8

B4

B3

B5

B6

B1

B2

B7

D8

D3

D5

D6

D1

D2

D7

D4

(b) Octahedra on crossings

Figure 2. Example (continued)

the knot diagram. For example, in Figure 2(b), we glue 4A1E1D1 ∪4C1E1D1

to 4A2F2D2 ∪ 4A2F2B2, 4C2F2D2 ∪ 4C2F2B2 to 4A3F3D3 ∪ 4A3F3B3,
4C3F3D3 ∪ 4C3F3B3 to 4A4E4B4 ∪ 4C4E4B4, 4A4E4D4 ∪ 4C4E4D4 to
4C5E5D5 ∪ 4A5E5D5, and so on. Finally, we glue 4D8F8C8 ∪ 4B8F8C8 to
4A1E1B1 ∪4C1E1B1. Note that, by gluing likewise, all An and Cn are iden-
tified to one point, all Bn and Dn are identified to another point, and all En
and Fn are identified to yet another point. Let these points be −∞, ∞ and `,
respectively. Then the regular neighborhoods of −∞ and ∞ become 3-balls,
whereas that of ` becomes the tubular neighborhood of the knot K.

We split each octahedron AnBnCnDnEnFn into four tetrahedra, AnBnEnFn,
BnCnEnFn, CnDnEnFn and DnAnEnFn. Then we collapse faces that lie on
the split sides. For example, in Figure 2(b), we collapse the faces 4A1E1B1 ∪
4C1E1B1 and 4D8F8C8 ∪ 4B8F8C8 to different points. Note that this face
collapsing makes some edges on these faces into points. Actually, the non-
horizontal edges A2F2, B4F4, D4F4, D7E7, and the horizontal edges B2C2,
A3B3, A5B5, A6B6 in Figure 2(b) are collapsed to points because of the
face collapsing. This makes the tetrahedra A1B1E1F1, B1C1E1F1, C1D1E1F1,
D1A1E1F1, A2B2E2F2, B2C2E2F2, D2A2E2F2, A3B3E3F3, A4B4E4F4,
B4C4E4F4, C4D4E4F4, D4A4E4F4, A5B5E5F5, A6B6E6F6, C7D7E7F7,
D7A7E7F7, A8B8E8F8, B8C8E8F8, C8D8E8F8 and D8A8E8F8 be collapsed to
points or edges.
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7

26
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3

A7
C5

A3

A5

A6

C7

C2C6

C3
B3

B5

B6

B7

D3

D5

D6 D2

Figure 3. G with survived tetrahedra

The surviving tetrahedra after the collapsing can be depicted as follows.
First, remove I and J on the tangle diagram and denote the result as G (see
Figure 3). Note that, by removing I∪J , some vertices are removed, two vertices
become trivalent and some sides are glued together. In Figure 3, vertices 1, 4,
8 are removed, 2, 7 become trivalent and G has 9 sides (we consider the sides
at the trivalent vertices are not glued together). Now we remove the horizontal
edges on the removed vertices, the horizontal edges that are adjacent to I ∪ J
and the horizontal edges in the unbounded region (see Figure 3 for the result).
The surviving horizontal edges mean the surviving ideal tetrahedra after the
collapsing. In the example, 12 tetrahedra survive.

The collapsing identifies the points ∞, −∞, and ` to each other and con-
nects the regular neighborhoods of them. Collapsing certain edges of a tetra-
hedron may change the topological type of `, but Yokota excluded such cases
by Assumption 1.1.–1.3. on the shape of the knot diagram (Assumption
1.1.–1.2. roughly means the diagram has no redundant crossings and As-
sumption 1.3. means the two non-boundary endpoints of I and J do not
coincide). Therefore, the result of the collapsing makes the neighborhood of
∞ = −∞ = ` to be the tubular neighborhood of the knot, and we obtain the
ideal triangulation of the knot complement (see [18] for a complete discussion).

2.2. Thurston triangulation

Thurston triangulation, introduced in [14], uses the same octahedra and the
same collapsing process, so it also induces an ideal triangulation of the knot
complement. However, it uses a different subdivision of each octahedra. In Fig-
ure 2(a), Yokota triangulation subdivides each octahedron into four tetrahedra.
However, Thurston triangulation subdivides it into five tetrahedra, AnBnDnFn,
BnCnDnFn, AnBnCnDn, AnBnCnEn and AnCnDnEn (see the right-hand side
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of Figure 4(a) for the shape of the subdivision). In this subdivision, if we ap-
ply the collapsing process, then some pair of tetrahedra shares the same four
vertices (see the first case of (Case 2) in the proof of Observation 2.1 for an
example). For the convenience of discussion, when this happens, we remove
these two tetrahedra and call the result Thurston triangulation.

To see the relation between these two triangulations, we define 4-5 move of
an octahedron and 3-2 move of a hexahedron as in Figure 4.

An Bn

CnDn

En

Fn

An Bn

CnDn

En

Fn

(a) 4-5 move

An Bn

En

Fn

An Bn

En

Fn

Cn Cn

(b) 3-2 move

Figure 4. 4-5 and 3-2 moves

Before the collapsing process, two triangulations are related by only 4-5
moves on each crossings. However, the following observation shows they are
actually related by 4-5 moves and also by 3-2 moves on some crossings after
the collapsing.

Observation 2.1. For a hyperbolic knot K with a fixed diagram, if the dia-
gram satisfies Assumption 1.1.–1.4. and Assumption 2.2. in [18], then
Yokota triangulation and Thurston triangulation are related by 3-2 moves and
4-5 moves on some crossings.
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Proof. First, for a non-trivalent vertex n of G, we show only one horizontal
edge in Figure 2(a) can be collapsed. If any of two horizontal edges are col-
lapsed, then the (1,1)-tangle diagram should be Figure 5(a) or Figure 5(b) for
some tangle diagrams K1 or K2 because the collapsed edges should lie in the
unbounded regions. However, Figure 5(a) is excluded because, if we close up
the open side, then K = K1#K2 and K cannot be prime. We can also exclude
Figure 5(b) because it violates Assumption 1.1. in [18]. Actually, in the later
case, we can reduce the number of crossings as in Figure 5(b).

K1

K2

n

(a)

K1

K2

n

K1

K2

(b)

Figure 5. When two horizontal edges are collapsed

Because of this and Yokota’s Assumptions, all possible cases of collapsing
edges in Figure 2(a) are as follows:

(Case 1) if n is a non-trivalent vertex of G, then none or one of the horizontal
edges is collapsed.

(Case 2) if n is a trivalent vertex of G, then

(1) DnEn is collapsed and none or one of AnBn, BnCn is collapsed,
(2) BnEn is collapsed and none or one of CnDn, DnAn is collapsed,
(3) AnFn is collapsed and none or one of BnCn, CnDn is collapsed.

(Case 1) is trivial, so we consider the first case of (Case 2).
If DnEn and AnBn are collapsed, then the survived tetrahedron is

BnCnEnFn in Yokota triangulation, and BnCnDnFn in Thurston triangula-
tion. They coincide because Dn = En by the collapsing of DnEn.

If DnEn is collapsed and no others are, then the survived tetrahedra are
AnBnEnFn and BnCnEnFn in Yokota triangulation, and AnBnDnFn,
BnCnDnFn, AnBnCnDn and AnBnCnEn in Thurston triangulation. However,
in Thurston triangulation, two tetrahedra AnBnCnDn and AnBnCnEn cancel
each other because they share the same vertices An, Bn ,Cn and Dn = En. The
others coincide with the tetrahedra in Yokota triangulation because Dn = En.

Other cases of (Case 2) are the same as the first case, so the proof is com-
pleted. �
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3. Potential functions

3.1. The case of Kashaev invariant

In the case of Kashaev invariant, Yokota’s potential function V (z1, . . . , zg)
is defined by the following way.

For the graph G, we define contributing sides as sides of G which are not
on the unbounded regions. For example, there are 5 contributing sides and
4 non-contributing sides in Figure 6. We assign complex variables z1, . . . , zg
to contributing sides and real number 1 to non-contributing sides. Then we
label each ideal tetrahedra with IT1, IT2, . . . , ITs and assign tl (l = 1, . . . , s)
to the horizontal edge of ITl as the shape parameter. We define tl as the
counterclockwise ratio of the complex variables z1, . . . , zg.

IT11

IT12

IT1

IT8

IT9 z2

z3

z5z4

z1

IT10

IT5

IT6

IT7

IT2

IT3 IT4

Figure 6. G with contributing sides

For example, in Figure 6,

t1 =
z5
1
, t2 =

z1
1
, t3 =

z3
z1
, t4 =

1

z3
, t5 =

z4
1
, t6 =

z1
z4
,

t7 =
1

z1
, t8 =

z2
1
, t9 =

z4
z2
, t10 =

1

z4
, t11 =

z5
z2
, t12 =

z3
z5
.

For each tetrahedron ITl, we assign dilogarithm function as in Figure 7.
Then we define V (z1, . . . , zg) by the summation of all these dilogarithm func-
tions. We also define the sign σl of ITl by

σl =

{
1 if ITl lies as in Figure 7(a),
−1 if ITl lies as in Figure 7(b).

Then V (z1, . . . , zg) is expressed by

V (z1, . . . , zg) =

g∑
l=1

σl

(
Li2(tσl

l )− π2

6

)
.
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�
�

�
�
� @

@@

@
@@

............. ...... ...... ...... ...... ............

ITl

−→ Li2(tl)−
π2

6

(a) Positive corner

@
@
@
@
@�

��

�
��

............. ...... ...... ...... ...... ............

ITl

−→ π2

6
− Li2(

1

tl
)

(b) Negative corner

Figure 7. Assigning dilogarithm functions to each tetrahedra

For example, in Figure 6,

σ1 = σ3 = σ6 = σ9 = σ11 = 1, σ2 = σ4 = σ5 = σ7 = σ8 = σ10 = σ12 = −1,

and

V (z1, . . . , z5) = Li2(z5)− Li2(
1

z1
) + Li2(

z3
z1

)− Li2(z3)− Li2(
1

z4
)

+ Li2(
z1
z4

)− Li2(z1)− Li2(
1

z2
) + Li2(

z4
z2

)− Li2(z4)

+ Li2(
z5
z2

)− Li2(
z5
z3

) +
π2

3
.

It is shown in [17] that V (z1, . . . , zg) can be obtained by the formal substi-
tution of the Kashaev invariant.1

3.2. The case of colored Jones polynomial

For each region of G, we choose one bounded region and assign 1 to it. Then
we assign variables w1, . . . , wm to the remaining bounded regions, and 0 to the
unbounded region (see Figure 8).

For each vertex of G, we assign the following functions according to the type
of the vertex and the horizontal edges. For positive crossings:

�
�
�

�
�	

@
@@

@
@@Rwj

wk

wl

wm

............................................................. ...... ...... ...... ...... ............
............
............
............
............

: P1(wj , wk, wl, wm) = −Li2( wl

wm
)− Li2( wl

wk
) + Li2(

wjwl

wkwm
)

+Li2(wm

wj
) + Li2(wk

wj
)− π2

6 + log wm

wj
log wk

wj
,

1We remark that the Kashaev invariant of a knot K defined in [17] is the one of the mirror

image K defined in [11]. This paper follows the definition of [17].
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w1

w2

0
w3

w4

1

Figure 8. Assigning variables to each region

�
�
�

�
�	

@
@@

@
@@Rwj

wk

wl

wm ............. ...... ...... ...... ...... ............
............
............
............
............

................................................
: P2(wj , wk, wl, wm) = Li2(wm

wl
)− Li2( wl

wk
)− Li2(wkwm

wjwl
)

+Li2(wm

wj
)− Li2(

wj

wk
) + π2

6 − log wk

wl
log wk

wj
,

�
�
�

�
�	

@
@@

@
@@Rwj

wk

wl

wm .............
............
............
............

................................................................................................

: P3(wj , wk, wl, wm) = Li2(wm

wl
) + Li2(wk

wl
) + Li2(

wjwl

wkwm
)

−Li2(
wj

wm
)− Li2(

wj

wk
)− π2

6 + log wm

wl
log wk

wl
,

�
�
�

�
�	

@
@@

@
@@Rwj

wk

wl

wm

............................................................................................................. ...... ...... ...... ...... ............

: P4(wj , wk, wl, wm) = −Li2( wl

wm
) + Li2(wk

wl
)− Li2(wkwm

wjwl
)

−Li2(
wj

wm
) + Li2(wk

wj
) + π2

6 − log wm

wl
log wm

wj
.

For negative crossings:

@
@
@
@
@R

�
��

�
��	 wj

wk

wl

wm

............................................................. ...... ...... ...... ...... ............
............
............
............
............

: N1(wj , wk, wl, wm) = Li2( wl

wm
) + Li2( wl

wk
)− Li2(

wjwl

wkwm
)

−Li2(wm

wj
)− Li2(wk

wj
) + π2

6 − log
wj

wm
log

wj

wk
,

@
@
@
@
@R

�
��

�
��	 wj

wk

wl

wm ............. ...... ...... ...... ...... ............
............
............
............
............

................................................
: N2(wj , wk, wl, wm) = −Li2(wm

wl
) + Li2( wl

wk
) + Li2(wkwm

wjwl
)

−Li2(wm

wj
) + Li2(

wj

wk
)− π2

6 + log wl

wk
log

wj

wk
,

@
@
@
@
@R

�
��

�
��	 wj

wk

wl

wm .............
............
............
............

................................................................................................

: N3(wj , wk, wl, wm) = −Li2(wm

wl
)− Li2(wk

wl
)− Li2(

wjwl

wkwm
)

+Li2(
wj

wm
) + Li2(

wj

wk
) + π2

6 − log wl

wm
log wl

wk
,
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@
@
@
@
@R

�
��

�
��	 wj

wk

wl

wm

............................................................................................................. ...... ...... ...... ...... ............

: N4(wj , wk, wl, wm) = Li2( wl

wm
)− Li2(wk

wl
) + Li2(wkwm

wjwl
)

+Li2(
wj

wm
)− Li2(wk

wj
)− π2

6 + log wl

wm
log

wj

wm
.

If no horizontal edge is collapsed at the positive nor the negative crossing, we
assign any of P1, . . . , P4 or N1, . . . , N4 to the crossing, respectively. In Lemma
3.1, we will show this choice does not have any effect on the optimistic limit of
the colored Jones polynomial.

For the endpoints of I and J , we use the same formula disregarding whether
certain horizontal edge is collapsed or not. For the endpoint of I:

�
�
�

�
�	 R

@
@@

wj

wl

wm
: P1(wj , wj , wl, wm) = P2(wj , wj , wl, wm)

= Li2(wm

wj
)− Li2(wl

wj
),

@
@
@
@
@R	

�
��

wj

wk

wl
: N1(wj , wk, wl, wj) = N4(wj , wk, wl, wj)

= −Li2(wk

wj
) + Li2(wl

wj
).

For the endpoint of J :

@
@@R

�
��	

@
@@

wj

wkwm
: P2(wj , wk, wk, wm) = P3(wj , wk, wk, wm)

= Li2(wm

wk
)− Li2(

wj

wk
),

�
��	

�
��

@
@@Rwj

wk

wl
: N3(wj , wk, wl, wl) = N4(wj , wk, wl, wl)

= −Li2(wk

wl
) + Li2(

wj

wl
).

In Appendix, we show that the assigned functions above are, in fact, obtained
by the formal substitution of certain forms of the R-matrix of the colored Jones
polynomial.

Now we define the potential function W (w1, . . . , wm) of the knot diagram
by the summation of all functions assigned to the vertices of G. For example,
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the potential function W (w1, . . . , w4) of Figure 8 is

(5)

W (w1, . . . , w4) = − Li2(
1

w3
)

+

{
Li2(

1

w2
) + Li2(

w1

w2
)− π2

6
+ log

1

w2
log

w1

w2

}
+

{
Li2(

w1

w2
) + Li2(

w4

w2
)− π2

6
+ log

w1

w2
log

w4

w2

}
+

{
Li2(

w4

w2
) + Li2(

w3

w2
)− π2

6
+ log

w4

w2
log

w3

w2

}
+

{
Li2(

1

w2
)− Li2(

w3

w2
)

}
.

We end this section with the invariance of the optimistic limit under the
choice of the four different forms of the potential functions of a crossing.

Lemma 3.1. For the functions P1, . . . , P4, N1, . . . , N4 defined above, let

Pf0 := Pf−
∑

a=j,k,l,m

(
wa

∂Pf
∂wa

)
logwa, Nf0 := Nf−

∑
a=j,k,l,m

(
wa

∂Nf
∂wa

)
logwa.

Then

P10 ≡ P20 ≡ P30 ≡ P40, N10 ≡ N20 ≡ N30 ≡ N40 (mod 4π2),

and for a = j, k, l,m,

exp

(
wa

∂P1

∂wa

)
= exp

(
wa

∂P2

∂wa

)
= exp

(
wa

∂P3

∂wa

)
= exp

(
wa

∂P4

∂wa

)
,

exp

(
wa

∂N1

∂wa

)
= exp

(
wa

∂N2

∂wa

)
= exp

(
wa

∂N3

∂wa

)
= exp

(
wa

∂N4

∂wa

)
.

Proof. For a given complex-valued function F (wj , wk, wl, wm), let

(6) F̂ (wj , wk, wl, wm) := F +
∑

a=j,k,l,m

2naπi logwa + 4nπ2

for some integer constants nj , nk, nl, nm, n. Then by a direct calculation,

F̂0 ≡ F0 (mod 4π2)

and

exp

(
wa

∂F

∂wa

)
= exp

(
wa

∂F̂

∂wa

)
.

These show F and F̂ define the same optimistic limit, so we define an equiva-

lence relation ≈ by F ≈ F̂ for F and F̂ satisfying (6).
For

P1 = − Li2(
wl
wm

)− Li2(
wl
wk

) + Li2(
wjwl
wkwm

) + Li2(
wm
wj

) + Li2(
wk
wj

)
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− π2

6
+ log

wm
wj

log
wk
wj
,

P2 = Li2(
wm
wl

)− Li2(
wl
wk

)− Li2(
wkwm
wjwl

) + Li2(
wm
wj

)− Li2(
wj
wk

) +
π2

6

− log
wk
wl

log
wk
wj
,

using the well-known identity Li2(z) + Li2( 1
z ) ≈ −π

2

6 −
1
2 log2(−z) for z ∈ C in

[6], we obtain

P1 − P2 = − Li2(
wl
wm

)− Li2(
wm
wl

) + Li2(
wjwl
wkwm

) + Li2(
wkwm
wjwl

)

+ Li2(
wk
wj

) + Li2(
wj
wk

)− π2

3
+

(
log

wm
wj

+ log
wk
wl

)
log

wk
wj

≈ − π2

2
+

1

2
log2(− wl

wm
)− 1

2
log2(−wkwm

wjwl
)− 1

2
log2(−wk

wj
)

+

(
log

wm
wj

+ log
wk
wl

)
log

wk
wj
.

For any integer n, some integers n1, . . . , n4 and indices a, b ∈ {i, j, k, l}, we
have

2nπi log
wa
wb

= 2nπi (logwa − logwb + 2n1πi) ≈ 0,

1

2
log2(−wk

wj
) =

1

2

{
log

wk
wj

+ (2n2 − 1)πi

}2

=
1

2
log2 wk

wj
+ (2n2 − 1)πi log

wk
wj
− 2n2(n2 − 1)π2 − π2

2

≈ 1

2
log2 wk

wj
− πi log

wk
wj
− π2

2

and

1

2

{
log

wk
wj
− log(−wkwm

wjwl
)

}2

=
1

2

{
log(− wl

wm
) + 2n3πi

}2

=
1

2
log2(− wl

wm
) + 2n3πi

{
log

wl
wm

+ (2n4 + 1)πi

}
− 2n23π

2

≈ 1

2
log2(− wl

wm
)− 2n3(n3 + 1)π2 ≈ 1

2
log2(− wl

wm
).

Therefore, we obtain

P1 − P2 ≈
1

2
log2(− wl

wm
)− 1

2
log2(−wkwm

wjwl
)− 1

2
log2 wk

wj
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+ πi log
wk
wj

+ log
wkwm
wjwl

log
wk
wj

≈ 1

2
log2(− wl

wm
)− 1

2
log2(−wkwm

wjwl
)− 1

2
log2 wk

wj

+ log(−wkwm
wjwl

) log
wk
wj

=
1

2
log2(− wl

wm
)− 1

2

{
log

wk
wj
− log(−wkwm

wjwl
)

}2

≈ 1

2
log2(− wl

wm
)− 1

2
log2(− wl

wm
) = 0.

Other equalities P2 ≈ P3 ≈ P4 and N1 ≈ N2 ≈ N3 ≈ N4 can be obtained by
the same method or by the symmetry of the equations. �

4. Geometric structures of the triangulations

For Yokota triangulation and Thurston triangulation, we assign complex
variables to each tetrahedra and solve certain equations. Then one of the
solutions gives the complete hyperbolic structure of the knot complement. We
describe these procedures in this section.

First, consider the positive and negative crossings in Figure 9, where za, zb,
zc, zd are the variables assigned to the sides of G and wj , wk, wl, wm are the
variables assigned to the regions of G. Note that za, zb, zc, zd and wj , wk, wl, wm
are used for defining the potential functions V (z1, . . . , zg) and W (w1, . . . , wm),
respectively.

�
�
�

�
�	

@
@@

@
@@Rwj

wk

wl

wm

zd zc

za zb

@
@
@
@
@R

�
��

�
��	 wj

wk

wl

wm

zd zc

za zb

Figure 9. Assignment of variables

Then consider Figure 10. We assign zb
za
, zczb ,

zd
zc

, za
zd

to the horizontal edges
CnDn, DnAn, AnBn, BnCn, respectively. This assignment determines the
shape parameters of the tetrahedra of Yokota triangulation. Also, for the pos-

itive crossing, we assign
(
wj

wm

)−1
, wk

wj
, wk

wl
,
(
wl

wm

)−1
to CnFn, DnEn, AnFn,

BnEn, respectively, and assign
(
wkwm

wjwl

)−1
to BnDn and AnCn for the pa-

rameter of the tetrahedron AnBnCnDn. For the negative crossing, we assign
wj

wm
,
(
wk

wj

)−1
,
(
wk

wl

)−1
, wl

wm
to BnEn, CnFn, DnEn, AnFn, respectively, and

assign
(
wjwl

wkwm

)−1
to BnDn and AnCn for the parameter of the tetrahedron



OPTIMISTIC LIMITS OF THE COLORED JONES POLYNOMIALS 659

AnBnCnDn. These assignments determine the shape parameters of the tetra-
hedra of Thurston triangulation.

An
Bn

Cn Dn

En

Fn

zb
za

zc
zb

zd
zc

za
zd

wm
wl

wk
wl

wk
wj

wjwl
wkwm

wm
wj

(a) Positive crossing

An

Bn Cn

Dn

En

Fn

zb
za

zc
zb

zd
zc

za
zd

wl
wm

wkwm
wjwl

wj
wm

wl
wk

wj
wk

(b) Negative crossing

Figure 10. Assignment of shape parameters

We do not assign any shape parameters to the collapsed edges. Also, in the
case of Thurston triangulation, we do not assign any shape parameters to the
edges that contain the endpoints of the collapsed edges. For example, if CnDn

is collapsed, then we do not assign any shape parameters to CnFn, DnEn nor
BnDn. Also, if DnEn is collapsed in Figure 10(a), then we do not assign any
shape parameters to BnDn, BnEn, CnDn nor DnAn.2

Yokota and Thurston triangulations are ideal triangulations, so by assigning
shape parameters, we can determine all the shapes of the hyperbolic ideal
tetrahedra of the triangulations. Note that if we assign a shape parameter
u ∈ C − {0, 1} to an edge of an ideal tetrahedron, then other edges are also
parametrized by u, u′ := 1

1−u and u′′ := 1− 1
u as in Figure 11.

So as to get the hyperbolic structure, these shape parameters should satisfy
the edge relations and the cusp conditions. The edge relations mean the prod-
uct of all shape parameters assigned to each edge should be 1, and the cusp
conditions mean the holonomies induced by the longitude and the meridian
should be translations on the cusp. These two conditions can be expressed by
a set of equations of the shape parameters, and we call this set of equations
hyperbolicity equations (for details, see [15, Chapter 4]). We call a solution
(z1, . . . , zg) of the hyperbolicity equations of Yokota triangulation essential if
none of the shape parameters of the tetrahedra are one of 0, 1,∞. We also

2The edges CnDn and DnAn are horizontal edges, but are identified to non-horizontal

edges. When this happens, we do not assign shape parameters to these edges.
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�
�
�
�
�
�
�
�
��A
A
A
A
A
A
A
A
AA�
�
�
�
�

Q
Q
Q
Q
Q
Q
Q

A B

C

D

u

u

u′

u′u′′

u′′

Figure 11. Parametrization of a hyperbolic ideal tetrahedron
with shape parameter u

define an essential solution (w1, . . . , wm) of Thurston triangulation in the same
way. It is a well-known fact that if the hyperbolicity equations have an essen-
tial solution, then they have the unique solution which gives the hyperbolic
structure to the triangulation3 (for details, see [16, Section 2.8]). We call this
unique solution the geometric solution, and denote the geometric solution of

Yokota triangulation by z(0) = (z
(0)
1 , . . . , z

(0)
g ) and that of Thurston triangula-

tion by w(0) = (w
(0)
1 , . . . , w

(0)
m ). We remark that, in Theorem 1.3, we assumed

the existence of the geometric solutions z(0) and w(0).
Yokota proved in [18] that, for the potential function V defined in Section 3.1,

H1 =
{

exp
(
zk

∂V
∂zk

)
= 1 | k = 1, . . . , g

}
becomes the hyperbolicity equations

of Yokota triangulation. In other words, each element of H1 becomes an edge
relation or a cusp condition for all k = 1, . . . , g, and all other equations are
trivially induced from the elements of H1.

Proposition 1.1 shows the same holds for the potential function W defined

in Section 3.2 and H2 =
{

exp
(
wl

∂W
∂wl

)
= 1 | l = 1, . . . ,m

}
. We prove this in

this section.
Let A be the set of non-collapsed horizontal edges of Thurston triangulation

of S3−K. Let B be the set of non-collapsed non-horizontal edges AnEn, BnEn,
CnEn, DnEn, AnFn, BnFn, CnFn, DnFn in Figure 10, which are not in A.4

Finally, let C be the set of edges AnCn, BnDn in Figure 10, which are not in
A ∪ B.

For example, in Figure 3, A = { A7B7 = B6C6 = D2A2 = D2F2 = A2B2 =
B2F2 = C2F2 = A3F3 = B3F3 = D3F3 = D5E5, D6A6 = B5C5, C6D6 =

3Strictly speaking, we have unique values of shape parameters. However, these values

uniquely determine the solutions (z
(0)
1 , . . . , z

(0)
g ) and (w

(0)
1 , . . . , w

(0)
m ). This was explained in

[18] for Yokota triangulation, which will be discussed at the end of this section for Thurston

triangulation.
4Collapsing may identify some horizontal edges to non-horizontal edges. In this case, we

put these identified edges in A.
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C5D5 = C3D3 = D7A7 = A7E7 = C7D7 = C7E7 = A2E2 = C2E2 = B2E2 =
A6E6 = B6E6 = C6E6 = C5F5, D5A5 = B3C3, C2D2 = B7C7 = D3A3}, B =
{ D3E3 = B7F7 = D7F7 = A6F6 = B6F6 = D6F6 = B5E5 = C5E5 = A5E5 =
C3F3, A7F7 = C6F6, D6E6 = B5F5 = D5F5 = A5F5 = A3E3 = B3E3 =
C3E3 = C7F7, B7E7 = D2E2 } and C = ∅.

Lemma 4.1. For a hyperbolic knot K with a fixed diagram, we assume the as-
sumptions of Proposition 1.1. Then the edges in B∪C satisfy the edge relations
trivially by the assigning rule of the shape parameters.

Proof. If an edge AnCn or BnDn of Figure 10 is in C, then the octahedron
AnBnCnDnEnFn does not have any collapsed edge. By the assigning rule of
the shape parameters, all the edges in C satisfy edge relations trivially.

Now we show the case of B. Consider the following four cases of two points
n1 and n2 in Figure 12 and the two regions between the crossings parametrized
by the variables wa and wb (for the positions of the points An1

,Bn1
, . . . ,Fn2

,
see Figure 2). First, we assume no edges are collapsed in the tetrahedra
An1

Bn1
Dn1

Fn1
and Cn2

Bn2
Dn2

Fn2
. This means the two regions with wa and

wb in Figure 12 are bounded.

�
n1 n2

wb

wa

(a)

�
n1 n2

wb

wa

(b)

�
n1 n2

wb

wa

(c)

�
n1 n2

wb

wa

(d)

Figure 12. Four cases

In the case of Figure 12(a), we want to prove that the edge relation of the
edge An1Fn1 = Cn2Fn2 ∈ B holds trivially. We draw a part of the cusp diagram
in An1Bn1Dn1Fn1 ∪Cn2Bn2Dn2Fn2 near Fn1 = Fn2 as in Figure 13. Our tetra-
hedra are all ideal, so the triangles4α1α2α3 and4α1α4α5 are Euclidean. Note
that α1, . . . , α5 are points in the edges An1

Fn1
= Cn2

Fn2
, Bn1

Fn1
, Dn1

Fn1
,
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Dn2
Fn2

, Bn2
Fn2

, respectively. Furthermore, edges α1α2 and α1α3 are identi-
fied to α1α5 and to α1α4, respectively.5 On the edge An1

Fn1
= Cn2

Fn2
, two

shape parameters wa/wb and wb/wa are assigned respectively by the assigning
rule, so the edge relation of An1Fn1 = Cn2Fn2 ∈ B holds trivially.

�
��

�
��

�
��

�
��HH

HHH
HHH

HHHH

α1

α2

α3 α4

α5

wa/wb wb/wa

| |

|| ||

≡ ≡

Figure 13. Part of the cusp diagram of Figure 12(a)

In the case of Figure 12(c), we want to prove that the edge relation of
An1

Fn1
∈ B holds trivially. If n2 is a positive crossing, then we draw a

part of the cusp diagram in An1Bn1Dn1Fn1 ∪An2Cn2Dn2En2 near Fn1 = En2 ,
and if n2 is a negative crossing, then we draw a part of the cusp diagram in
An1

Bn1
Dn1

Fn1
∪An2

Bn2
Cn2

En2
near Fn1

= En2
as in Figure 14.

�
��

�
��

HH
HHHH

HH
HHHH

α1

α2

α3

α4

wa/wb

wa/wb

|

|

Figure 14. Part of the cusp diagram of Figure 12(c)

Note that if n2 is a positive crossing, then α1, . . . , α4 are points in the edges
An1

Fn1
= An2

En2
, Bn1

Fn1
, Dn1

Fn1
= Dn2

En2
, Cn2

En2
, respectively, and if n2

is a negative crossing, then α1, . . . , α4 are points in the edges An1
Fn1

= Cn2
En2

,
Bn1Fn1 , Dn1Fn1 = Bn2En2 , An2En2 , respectively. Furthermore, the edge
α2α1 is identified to α3α4, so the diagram in Figure 14 becomes an annu-
lus. The product of shape parameters around α1 = α4 in the annulus is
wa

wb

(
wa

wb

)′ (
wa

wb

)′′
= −1, and the one around α2 = α3 is also −1. Therefore, if

we consider the previous annulus on the right of Figure 14, which shares the
edge α1α4, then we obtain the edge relation of An1

Fn1
trivially.

We remark that the previous annulus always exists because, when we follow
the horizontal line in Figure 12(c) backwards, after meeting the under-crossing

5In fact, edges α2α3 and α5α4 are also identified, so the two triangles are cancelled by

each other. This means the corresponding tetrahedra An1Bn1Dn1Fn1 and Cn2Bn2Dn2Fn2

are cancelled by each other.
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point n2, we let the next over-crossing point n3 (see Figure 15) (If n3 does
not exist, then An1

Fn1
∈ A but this violates our assumption). Then a part

of the cusp diagram between n2 and n3 also forms an annulus, and this is the
previous annulus.6

�
n1 n2 n3

wb

wa

· · ·

· · ·

Figure 15. Previous annulus

The cases of Figure 12(b) and Figure 12(d) are the same as the cases of
Figure 12(a) and Figure 12(c), respectively. Therefore, we find all the edges in
B satisfy the edge relations trivially by the method of parametrizing edges.

Now we assume one of the regions parametrized by wa or wb in Figure 12
is an unbounded region. Then the cusp diagram in Figure 13 collapses to an
edge α2α3 = α5α4 and the one in Figure 14 collapses to an edge α2α3 = α1α4.
Therefore, our arguments for B still hold for the collapsed case.7 �

Proof of Proposition 1.1. Consider the function P1(wj , wk, wl, wm), which pre-
viously appeared in Section 3.2. By direct calculation, we obtain

exp

(
wj
∂P1

∂wj

)
=

(
wjwl
wkwm

)′(
wm
wj

)′′(
wk
wj

)′′
,(7)

exp

(
wk

∂P1

∂wk

)
=

(
wjwl
wkwm

)′′(
wk
wl

)′(
wk
wj

)′
,(8)

exp

(
wl
∂P1

∂wl

)
=

(
wjwl
wkwm

)′(
wm
wl

)′′(
wk
wl

)′′
,(9)

exp

(
wm

∂P1

∂wm

)
=

(
wjwl
wkwm

)′′(
wm
wl

)′(
wm
wj

)′
.(10)

Note that (7), (8), (9) and (10) are the products of shape parameters assigned
to the edges CnDn, DnAn, AnBn and BnCn of Figure 10(a), respectively.8

6As we have seen in the case of Figure 12(a), the crossing points between n2 and n3 do

not have any effect on the part of the cusp diagram because the triangles in Figure 13 are
cancelled by each other. Also, as explained below, the existence of the previous annulus still

holds even if some regions between n2 and n3 are unbounded.
7What we need is to consider the next annuli on the left and the right side, and do the

same arguments.
8For example, consider equation (7) and Figure 10(a). The shape parameters assigned

to the edge CnDn are
(
wjwl

wkwm

)′
,
(
wm
wj

)′′
and

(
wk
wj

)′′
, which come from the tetrahedra

CnDnAnBn, CnDnBnFn and CnDnAnEn, respectively.
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Also, after evaluating wl = 0 to P1, we obtain

exp

(
wj
∂P1(wj , wk, 0, wm)

∂wj

)
=

(
wm
wj

)′′(
wk
wj

)′′
,(11)

exp

(
wk

∂P1(wj , wk, 0, wm)

∂wk

)
=

wm
wj

(
wk
wj

)′
,(12)

exp

(
wm

∂P1(wj , wk, 0, wm)

∂wm

)
=

(
wm
wj

)′
wk
wj
.(13)

Note that (11), (12) and (13) are the products of shape parameters assigned to
the edges CnDn, DnAn and BnCn of Figure 10(a), respectively, after collapsing
the edge AnBn. Direct calculation shows the same relations hold for P2, P3,
P4, N1, N2, N3 and N4.

Consider the first potential function for the endpoint of I in Section 3.2.
Direct calculation shows

exp

(
wl
∂P1(wj , wj , wl, wm)

∂wl

)
= exp

(
wl
∂P1(wj , wj , wl, 0)

∂wl

)
=

(
wj
wl

)′′
,

(14)

exp

(
wm

∂P1(wj , wj , wl, wm)

∂wm

)
= exp

(
wm

∂P1(wj , wj , 0, wm)

∂wm

)
=

(
wm
wj

)′
,

(15)

exp

(
wj
∂P1(wj , wj , wl, wm)

∂wj

)
=

(
wj
wm

)′′(
wl
wj

)′
=

(
wm
wj

)′′(
wj
wl

)′
wm
wl

,

(16)

exp

(
wj
∂P1(wj , wj , 0, wm)

∂wj

)
=

(
wj
wm

)′′
=

(
wm
wj

)′′
wm
wj

(−1),

(17)

exp

(
wj
∂P1(wj , wj , wl, 0)

∂wj

)
=

(
wl
wj

)′
=

(
wj
wl

)′
wj
wl

(−1),

(18)

where (14) and (15) are the products of shape parameters assigned to the edges
AnBn and BnCn of Figure 10(a), respectively, after collapsing the edge DnEn
without or with the collapsing of a horizontal edge.

To explain that (16), (17) and (18) are still parts of edge relations, we need
different arguments. First, consider Figure 16.

In Figure 16(a), the product of all shape parameters assigned to the edge
expressed by dots is

(19)

(
wa
wb

)′(
wa
wb

)′′(
wb
wa

)′(
wb
wa

)′′
= 1,
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��
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��

��H
HHH

HHH
HHH

HHu

u

u

u
wa/wb wb/wa

| |

|| ||

≡ ≡

(a) From Figure 13

��
�
��
�

HH
HHHH

HHH
HHH

u

u
wa/wb

wa/wb

|

|

(b) From Figure 14

Figure 16. Parts of the cusp diagrams from Figure 13 and
Figure 14

and in Figure 16(b), the product is

(20)

(
wa
wb

)′(
wa
wb

)′′
wa
wb

= −1.

To see the meaning of (16), consider the following two cases in Figure 17,
where n1 is the endpoint of I and n2 is the previous over-crossing point. Figure
17(a) means the case when there is no crossing point between n1 and n2, and
Figure 17(b) means the other case.

�

6

n1 n2wl

wmI

wj

(a)

�

6

�
n1 n2wl

wm

wc

wd

we

wf
· · ·

· · ·

I

wj

(b)

Figure 17. Two cases after the endpoint of I

Because n1 is the endpoint of I, the edge Dn1
En1

of the octahedron on n1 in
Figure 10(a) is collapsed to a point Dn1

= En1
and becomes two tetrahedra as

in Figure 18 (if one more horizontal edge is collapsed here, the result becomes
one tetrahedron. This is the cases of equations (17) and (18)).

The part of the cusp diagrams of each case are in Figure 19 (see Figure 9
and Figure 10 for the assigning rule of the shape parameters).
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An1

Dn1
=En1

Fn1

wj
wl

wm
wjBn1

Cn1

Figure 18. Figure 10(a) after collapsing the edge Dn1En1

��
�
��
�

HHH
HHH

HHH
HHH

wm/wl

wm/wl

(a)

��
�
��

�
��

��HH
HHH

HHH
HH��

�
��

�
��

��HH
HHH

HHH
HHt

t
t
t

t
t

· · ·wm/wl wl/wm wd/wc wc/wd wf/we

wf/we��
�
��

HH
HHH

HHH
HH

(b)

Figure 19. The parts of the cusp diagram corresponding to
Figure 17

In the case of Figure 17(a), the product of shape parameters assigned to

the edges Cn1
Dn1

= Dn1
An1

of Figure 18 is
(
wm

wj

)′′ (
wj

wl

)′
. These edges are

identified to Cn2
Fn2

, and wl

wm
is assigned to this edge. This explains that (16)
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is the product of shape parameters assigned to the edges Cn1
Dn1

= Dn1
An1

=
Cn2

Fn2
.

In the case of Figure 17(b), the product of shape parameters assigned to the

edges Cn1
Dn1

= Dn1
An1

of Figure 18 is
(
wm

wj

)′′ (
wj

wl

)′
. In Figure 19(b), these

edges are identified to the edges drawn by the dots, and the product of shape
parameters assigned to the edges is(

wl
wm

)′(
wl
wm

)′′
× 1× · · · × (−1) =

wm
wl

by (19) and (20). This also explains (16) is the product of shape parameters
assigned to Cn1

Dn1
= Dn1

An1
and some other edges identified to this. This

fact is still true9 even if some of the regions assigned by wc, wd, . . . , we, wf are
unbounded regions because the collapsing of the horizontal edges makes the
cusp diagrams of Figure 13 and Figure 14 into edges. If the cusp diagram
of Figure 13 becomes an edge, then ignoring the diagram is enough for our
consideration, and if that of Figure 14 becomes an edge, then considering the
previous annulus is enough. The previous annulus always exists because, by
the same argument as in the proof of Lemma 4.1, if we choose the next over-
crossing point n3 by following the horizontal lines backwards, the cusp diagram
between n2 and n3 becomes the previous annulus.10

Now we describe the meaning of (17). Let n1 be the endpoint of I, n2 be
the previous over-crossing point and n3 be the previous under-crossing point.
Also, let ñ be the previous point of n1. Assume the edges Dn1

En1
and An1

Bn1

of Figure 10(a) are collapsed. Then Cn1Dn1 = Bn1Dn1 , and
(
wm

wj

)′′
wm

wj
is

assigned to this edge. If ñ = n2, then the edges identified to Cn1
Dn1

= Bn1
Dn1

appear between the points ñ = n2 and n3 as the dots in Figure 16, and if
ñ 6= n2, then the edges appear between ñ and n2 in the same way. Particularly,
Figure 16(a) may appear many times, but Figure 16(b) appears only one time
at the points n3 or n2, respectively. By (19) and (20), the product of all
shape parameters assigned to the dots is −1, so (17) is the product of shape
parameters assigned to the edges Cn1

Dn1
= Bn1

Dn1
and some others identified

to these. This fact is still true when some of the horizontal edges or non-
horizontal edges of the octahedra are collapsed because of the same reason
explained above for the case of (16).

The same relations hold for (18) and the cases of other potential functions
of the endpoints of I and J by the same arguments.

9Even if the endpoint of J lies between the crossings n1 and n2, this fact is still true

because the collapsing of the non-horizontal edges does not change the part of the cusp

diagram we are considering.
10There is a concern that the previous annulus is collapsed to an edge, and all the previous

annuli, following the horizontal line, are collapsed to edges. However, this cannot happen
because Thurston triangulation is a triangulation of the hyperbolic knot complement S3−K
and we assumed the existence of the geometric solution.
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Therefore, we conclude that H2 becomes all the edge relations of A except
the one horizontal edge whose region is assigned as 0 instead of the variables
w1, . . . , wm. For an ideal tetrahedron parametrized with u ∈ C as in Figure 11,
the product of all shape parameters assigned to all edges in the tetrahedron
is (uu′u′′)2 = 1. This implies the product of all edge relations becomes 1.
On the other hand, from Lemma 4.1 and the above arguments, we found all
but one edge relation by H2. Therefore, the remaining edge relation holds
automatically.

Finally, we prove H2 contains the cusp condition. Note that edges α1α4 and
α2α3 in Figure 14 are meridians of the cusp diagram. The same shape param-
eter wa

wb
is assigned to the corners ∠α2α1α3 and ∠α1α3α4, so one of the cusp

conditions is trivially satisfied by the method of assigning shape parameters to
edges. If we have all the edge relations and one cusp condition of a meridian,
then we can obtain all remaining cusp conditions using these relations. There-
fore, we conclude H2 are the hyperbolicity equations of Thurston triangulation
of S3 −K. �

We remark one technical fact. For Thurston triangulation, let the shape
parameters of the ideal tetrahedra be s1, . . . , sh. These parameters are defined
by the ratios of a solution w1, . . . , wm of H2, so if the values of w1, . . . , wm
are fixed, then the values of s1, . . . , sh are uniquely determined and satisfy
the hyperbolicity equation. Likewise, if the values of s1, . . . , sh satisfying the
hyperbolicity equations are fixed, then we can uniquely determine the solution
of w1, . . . , wm of H2 as follows: First, we can determine some of the values of
w1, . . . , wm, which are assigned to the regions adjacent to the region assigned
with the number 0. Once a value wl of a region is determined, then all the
values of the adjacent regions can be determined. Therefore, all w1, . . . , wm
can be determined. Furthermore, those values are well-defined and become a
solution of H2 because of the hyperbolicity equations.

In the next section, we will show the shape parameters of Yokota triangu-
lation determines that of Thurston triangulation, and with certain restriction,
vice versa. By the above discussion, this correspondence means each essential
solution of H1 determines a unique solution of H2. Furthermore, if all the
determined solutions of H2 are essential, then each essential solution of H2

determines a unique essential solution of H1.

5. Proof of Theorem 1.3

We start this section with the proof of Lemma 1.2.

Proof of Lemma 1.2. For a hyperbolic ideal octahedron in Figure 20, we assign
shape parameters t1, t2, t3, t4, u1, u2, u3 and u4 to the edges CD, DA, AB,
BC, CF, DE, AF and BE, respectively. Let u5 := 1

u1u3
= 1

u2u4
, which is also a

shape parameter assigned to the edges AC and BD of the tetrahedron ABCD.
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AB

C D

E

F

t1

t2

t3

t4

u3u1

u2
u4

Figure 20. Assignment of shape parameters

Then we obtain the following relations.
u1 = t′1t

′′
4 ,

u2 = t′1t
′′
2 ,

u3 = t′3t
′′
2 ,

u4 = t′3t
′′
4 ,

u5 = (t′1t
′′
2 t
′
3t
′′
4)
−1
,


t1 = u′′1u

′′
2u
′
5,

t2 = u′2u
′
3u
′′
5 ,

t3 = u′′3u
′′
4u
′
5,

t4 = u′4u
′
1u
′′
5 ,

t1t2t3t4 = 1.

(21)

Note that t1, . . . , t4 and u1, . . . , u5 are the shape parameters of the tetrahedra
in Yokota triangulation and in Thurston triangulation, respectively. According
to Observation 2.1, we know these two triangulations are related by 3-2 moves
and 4-5 moves on collapsed octahedra and non-collapsed octahedra, respec-
tively. Equation (21) shows the correspondence between the shape parameters
under 4-5 moves, so if t1, . . . , t4 /∈ {0, 1,∞}, then we can determine the values
of u1, . . . , u5 from the left side of (21). Also, the equation corresponding to
3-2 move can be obtained easily (see (40) for example). This implies that the
shape parameters of Yokota triangulation determine that of Thurston triangu-
lation. Furthermore, if all u1, . . . , u5 /∈ {0, 1,∞}, then the shape parameters of
Thurston triangulation recover that of Yokota triangulation by the right side
of (21). This completes the proof. �

Our goal of this section is to prove

V0(z1, . . . , zg) ≡W0(w1, . . . , wm) (mod 4π2)

for any essential solution (z1, . . . , zg) of H1 and the corresponding essential
solution (w1, . . . , wm) of H2. To prove this, we introduce the dilogarithm iden-
tities of an ideal octahedron in Lemma 5.1. Note that the functions Li2(z) and
log z are multi-valued functions. Therefore, to obtain well-defined values, we
have to select a proper branch of the logarithm by choosing arg z and arg(1−z).
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Let D(z) := Im Li2(z) + log |z| arg(1− z) be the Bloch-Wigner function for
z ∈ C − {0, 1}. It is a well-known fact D(z) is invariant under any choice of
log-branch and that D(z) = −D( 1

z ) = vol(Tz), where Tz is the hyperbolic ideal
tetrahedron with the shape parameter z. Therefore, from Figure 20, we obtain

(22) D(t1)+D(t2)+D(t3)+D(t4) = D(u1)+D(u2)+D(u3)+D(u4)+D(u5).

Lemma 5.1. Let t1, t2, t3, t4, u1, u2, u3, u4, u5 /∈ {0, 1,∞} be the shape param-
eters defined in the hyperbolic octahedron in Figure 20 satisfying (21) and (22).
Then the following identities hold for any choice of log-branch.

Li2(t1)− Li2(
1

t2
) + Li2(t3)− Li2(

1

t4
)

≡ Li2(u1) + Li2(u2)− Li2(
1

u3
)− Li2(

1

u4
) + Li2(u5)(23)

− π2

6
+ log u1 log u2 −

(
− log(1− t1) + log(1− 1

t4
)

)
log u2

−
(
− log(1− t1) + log(1− 1

t2
)

)
log u1

+

(
− log(1− t1) + log(1− 1

t4
)

)
log(1− u1)

+

(
− log(1− t1) + log(1− 1

t2
)

)
log(1− u2)

+

(
− log(1− t3) + log(1− 1

t2
)

)
log(1− 1

u3
)

+

(
− log(1− t3) + log(1− 1

t4
)

)
log(1− 1

u4
)

+

(
log(1− t1)− log(1− 1

t2
)

+ log(1− t3)− log(1− 1

t4
)

)
log(1− u5) (mod 4π2)

≡ Li2(u1)− Li2(
1

u2
)− Li2(

1

u3
) + Li2(u4)− Li2(

1

u5
)(24)

+
π2

6
− log u2 log u3 +

(
− log(1− t3) + log(1− 1

t2
)

)
log u2

+

(
− log(1− t1) + log(1− 1

t2
)

)
log u3

+

(
− log(1− t1) + log(1− 1

t4
)

)
log(1− u1)

+

(
− log(1− t1) + log(1− 1

t2
)

)
log(1− 1

u2
)
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+

(
− log(1− t3) + log(1− 1

t2
)

)
log(1− 1

u3
)

+

(
− log(1− t3) + log(1− 1

t4
)

)
log(1− u4)

+

(
log(1− t1)− log(1− 1

t2
)

+ log(1− t3)− log(1− 1

t4
)

)
log(1− 1

u5
) (mod 4π2)

≡ − Li2(
1

u1
)− Li2(

1

u2
) + Li2(u3) + Li2(u4) + Li2(u5)(25)

− π2

6
+ log u3 log u4 −

(
− log(1− t3) + log(1− 1

t4
)

)
log u3

−
(
− log(1− t3) + log(1− 1

t2
)

)
log u4

+

(
− log(1− t1) + log(1− 1

t4
)

)
log(1− 1

u1
)

+

(
− log(1− t1) + log(1− 1

t2
)

)
log(1− 1

u2
)

+

(
− log(1− t3) + log(1− 1

t2
)

)
log(1− u3)

+

(
− log(1− t3) + log(1− 1

t4
)

)
log(1− u4)

+

(
log(1− t1)− log(1− 1

t2
)

+ log(1− t3)− log(1− 1

t4
)

)
log(1− u5) (mod 4π2)

≡ − Li2(
1

u1
) + Li2(u2) + Li2(u3)− Li2(

1

u4
)− Li2(

1

u5
)(26)

+
π2

6
− log u1 log u4 +

(
− log(1− t1) + log(1− 1

t4
)

)
log u4

+

(
− log(1− t3) + log(1− 1

t4
)

)
log u1

+

(
− log(1− t1) + log(1− 1

t4
)

)
log(1− 1

u1
)

+

(
− log(1− t1) + log(1− 1

t2
)

)
log(1− u2)
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+

(
− log(1− t3) + log(1− 1

t2
)

)
log(1− u3)

+

(
− log(1− t3) + log(1− 1

t4
)

)
log(1− 1

u4
)

+

(
log(1− t1)− log(1− 1

t2
)

+ log(1− t3)− log(1− 1

t4
)

)
log(1− 1

u5
) (mod 4π2).

Furthermore,

Li2(t1)− Li2(
1

t2
)− Li2(

1

t4
) +

π2

6
(27)

≡ Li2(u1) + Li2(u2)− π2

6
+ log u1 log u2

+

(
− log(1− t1) + log(1− 1

t4
)

)
(− log u2 + log(1− u1))

+

(
− log(1− t1) + log(1− 1

t2
)

)
(− log u1 + log(1− u2)) (mod 4π2)

when AB is collapsed to a point,

Li2(t1)− Li2(
1

t2
) + Li2(t3)− π2

6
(28)

≡ − Li2(
1

u2
)− Li2(

1

u3
) +

π2

6
− log u2 log u3

+

(
− log(1− t3) + log(1− 1

t2
)

)(
log u2 + log(1− 1

u3
)

)
+

(
− log(1− t1) + log(1− 1

t2
)

)(
log u3 + log(1− 1

u2
)

)
(mod 4π2)

when BC is collapsed to a point,

− Li2(
1

t2
) + Li2(t3)− Li2(

1

t4
) +

π2

6
(29)

≡ Li2(u3) + Li2(u4)− π2

6
+ log u3 log u4

+

(
− log(1− t3) + log(1− 1

t4
)

)
(− log u3 + log(1− u4))

+

(
− log(1− t3) + log(1− 1

t2
)

)
(− log u4 + log(1− u3)) (mod 4π2)

when CD is collapsed to a point, and

Li2(t1) + Li2(t3)− Li2(
1

t4
)− π2

6
(30)
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≡ − Li2(
1

u1
)− Li2(

1

u4
) +

π2

6
− log u1 log u4

+

(
− log(1− t1) + log(1− 1

t4
)

)(
log u4 + log(1− 1

u1
)

)
+

(
− log(1− t3) + log(1− 1

t4
)

)(
log u1 + log(1− 1

u4
)

)
(mod 4π2)

when DA is collapsed to a point.

Proof. For a function F consisting of dilogarithms and logarithms with certain
fixed log-branch, we denote by F ∗ the same function with different log-branch
corresponding to an analytic continuation of F . It is a well-known fact that

(31) Li∗2(z) ≡ Li2(z) + 2aπi log z (mod 4π2)

for certain integer a. Let A := Li2(z) −
(
z ∂Li2(z)∂z

)
log z. Then using (31), we

have

A∗ = Li∗2(z)−
(
z
∂Li∗2(z)

∂z

)
log∗ z

≡ Li2(z) + 2aπi log z −
(
z
∂Li2(z)

∂z
+ 2aπi

)
log∗ z

≡ Li2(z)−
(
z
∂Li2(z)

∂z

)
log∗ z (mod 4π2)

and

(32) A∗ −A ≡ −
(
z
∂Li2(z)

∂z

)
(log∗ z − log z) (mod 4π2).

Similarly, for B := Li2(1/z)−
(
z ∂Li2(1/z)∂z

)
log z, we have

(33) B∗ −B ≡ −
(
z
∂Li2(1/z)

∂z

)
(log∗ z − log z) (mod 4π2).

Now, we consider (23). Let

X(t1, . . . , t4) := Li2(t1)− Li2(
1

t2
) + Li2(t3)− Li2(

1

t4
),

X0(t1, . . . , t4) := X −
4∑
k=1

(
tk
∂X

∂tk

)
log tk,

Y (u1, . . . , u5) := Li2(u1) + Li2(u2)− Li2(
1

u3
)− Li2(

1

u4
) + Li2(u5)

− π2

6
+ log u1 log u2,

Y0(u1, . . . , u5) := Y −
5∑
l=1

(
ul
∂Y

∂ul

)
log ul,
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and
Z := (right side of (23))–(left side of (23)).

Then by using (32), (33) and

log∗ u1 log∗ u2 − log u1 log u2

= log∗ u1(log∗ u2 − log u2 + log u2)− (log∗ u1 − log∗ u1 + log u1) log u2

≡ log u1(log∗ u2 − log u2) + log u2(log∗ u1 − log u1) (mod 4π2),

we obtain

(X∗0 −X0)− (Y ∗0 − Y0)(34)

≡ −
4∑
k=1

tk
∂X

∂tk
(log∗ tk − log tk) +

5∑
l=1

ul
∂Y

∂ul
(log∗ ul − log ul) (mod 4π2)

and

(35) ul
∂Y ∗

∂ul
− ul

∂Y

∂ul
≡ 0 (mod 2πi)

for l = 1, . . . , 5.
First, we will prove Z is invariant modulo 4π2 for any choice of log-branch

by showing

(36) (Z +X0 − Y0)∗ − (Z +X0 − Y0) ≡ (X∗0 −X0)− (Y ∗0 − Y0) (mod 4π2).

Note that

Z +X0 − Y0(37)

=

(
− log(1− t1) + log(1− 1

t4
)− log u1

)
(−u1

∂Y

∂u1
)

+

(
− log(1− t1) + log(1− 1

t2
)− log u2

)
(−u2

∂Y

∂u2
)

+

(
− log(1− t3) + log(1− 1

t2
)− log u3

)
(−u3

∂Y

∂u3
)

+

(
− log(1− t3) + log(1− 1

t4
)− log u4

)
(−u4

∂Y

∂u4
)

+

(
log(1− t1)− log(1− 1

t2
) + log(1− t3)

− log(1− 1

t4
)− log u5

)
(−u5

∂Y

∂u5
)−

4∑
k=1

tk
∂X

∂tk
log tk.

From (21), we know

− log(1− t1) + log(1− 1

t4
)− log u1

≡ − log(1− t1) + log(1− 1

t2
)− log u2
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≡ − log(1− t3) + log(1− 1

t2
)− log u3

≡ − log(1− t3) + log(1− 1

t4
)− log u4

≡ log(1− t1)− log(1− 1

t2
) + log(1− t3)− log(1− 1

t4
)− log u5

≡ 0 (mod 2πi).

Therefore, from (37) and the above, we have

(Z +X0 − Y0)∗

(38)

≡
(
− log∗(1− t1) + log∗(1− 1

t4
)− log∗ u1

)
(−u1

∂Y

∂u1
)

+

(
− log∗(1− t1) + log∗(1− 1

t2
)− log∗ u2

)
(−u2

∂Y

∂u2
)

+

(
− log∗(1− t3) + log∗(1− 1

t2
)− log∗ u3

)
(−u3

∂Y

∂u3
)

+

(
− log∗(1− t3) + log∗(1− 1

t4
)− log∗ u4

)
(−u4

∂Y

∂u4
)

+

(
log∗(1− t1)− log∗(1− 1

t2
) + log∗(1− t3)

− log∗(1− 1

t4
)− log∗ u5

)
(−u5

∂Y

∂u5
)−

4∑
k=1

tk
∂X∗

∂tk
log∗ tk (mod 4π2).

Combining (37) and (38), we obtain

(Z +X0 − Y0)∗ − (Z +X0 − Y0)(39)

≡
5∑
l=1

ul
∂Y

∂ul
(log∗ ul − log ul)

+ (log∗(1− t1)− log(1− t1))(u1
∂Y

∂u1
+ u2

∂Y

∂u2
− u5

∂Y

∂u5
)

+ (log∗(1− 1

t2
)− log(1− 1

t2
))(−u2

∂Y

∂u2
− u3

∂Y

∂u3
+ u5

∂Y

∂u5
)

+ (log∗(1− t3)− log(1− t3))(u3
∂Y

∂u3
+ u4

∂Y

∂u4
− u5

∂Y

∂u5
)

+ (log∗(1− 1

t4
)− log(1− 1

t4
))(−u1

∂Y

∂u1
− u4

∂Y

∂u4
+ u5

∂Y

∂u5
)

−
4∑
k=1

tk
∂X∗

∂tk
log∗ tk +

4∑
k=1

tk
∂X

∂tk
log tk (mod 4π2).
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From (21), we know

u1
∂Y

∂u1
+ u2

∂Y

∂u2
− u5

∂Y

∂u5
= − log(1− u1) + log u2 − log(1− u2) + log u2 + log(1− u5)

≡ − log∗ t1 (mod 2πi),

and

−u2
∂Y

∂u2
− u3

∂Y

∂u3
+ u5

∂Y

∂u5
≡ − log∗ t2 (mod 2πi),

u3
∂Y

∂u3
+ u4

∂Y

∂u4
− u5

∂Y

∂u5
≡ − log∗ t3 (mod 2πi),

−u1
∂Y

∂u1
− u4

∂Y

∂u4
+ u5

∂Y

∂u5
≡ − log∗ t4 (mod 2πi).

Applying (34) and (35) to (39), we obtain

(Z +X0 − Y0)∗ − (Z +X0 − Y0)

≡
5∑
l=1

ul
∂Y

∂ul
(log∗ ul − log ul)

−
4∑
k=1

(tk
∂X∗

∂tk
− tk

∂X

∂tk
)(− log∗ tk)−

4∑
k=1

tk
∂X∗

∂tk
log∗ tk +

4∑
k=1

tk
∂X

∂tk
log tk

≡ (X∗0 −X0)− (Y ∗0 − Y0) (mod 4π2),

which shows (36).
Now we will prove Z = 0 for certain log-branch. Direct calculation shows

the imaginary part of (23) becomes

D(t1)−D(
1

t2
) +D(t3)−D(

1

t4
)− log |t1| arg(1− t1)

− log |t2| arg(1− 1

t2
)− log |t3| arg(1− t3)− log |t4| arg(1− 1

t4
)

= D(u1) +D(u2)−D(
1

u3
)−D(

1

u4
) +D(u5) + log |u1| arg u2 + arg u1 log |u2|

− log |u1| arg(1− u1)− log |u2| arg(1− u2)− log |u3| arg(1− 1

u3
)

− log |u4| arg(1− 1

u4
)− log |u5| arg(1− u5)

− log |u1| arg u2 − log |u2| arg u1

+ log |u1| arg(1− u1) + log |u2| arg(1− u2) + log |u3| arg(1− 1

u3
)

+ log |u4| arg(1− 1

u4
) + log |u5| arg(1− u5)
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− arg(1− t1) log
∣∣u−12 u−11 (1− u1)(1− u2)(1− u5)−1

∣∣
− arg(1− 1

t2
) log

∣∣∣∣u1(1− u2)−1(1− 1

u3
)−1(1− u5)

∣∣∣∣
− arg(1− t3) log

∣∣∣∣(1− 1

u3
)(1− 1

u4
)(1− u5)−1

∣∣∣∣
− arg(1− 1

t4
) log

∣∣∣∣u2(1− u1)−1(1− 1

u4
)−1(1− u5)

∣∣∣∣ .
Using u5 = 1

u1u3
= 1

u2u4
, we obtain

u−12 u−11 (1− u1)(1− u2)(1− u5)−1 = u′′1u
′′
2u
′
5 = t1,

u1(1− u2)−1(1− 1

u3
)−1(1− u5) = u′2u

′
3u
′′
5 = t2,

(1− 1

u3
)(1− 1

u4
)(1− u5)−1 = u′′3u

′′
4u
′
5 = t3,

u2(1− u1)−1(1− 1

u4
)−1(1− u5) = u′4u

′
1u
′′
5 = t4.

By applying these, we can verify the imaginary part of (23) is equivalent to

D(t1)−D(
1

t2
) +D(t3)−D(

1

t4
) = D(u1) +D(u2)−D(

1

u3
)−D(

1

u4
) +D(u5),

which is also equivalent to (22). On the other hand, (23) is an analytic function
on certain 3-dimensional open set, so the real part is some real constant. After
evaluating (23) at t1 = t2 = t3 = t4 = u1 = u2 = u3 = u4 = i and u5 = −1,11

we find the real constant is zero. Therefore, we complete the proof of (23).
The identity (24) can be obtained from (23) by substituting t1, t2, t3, t4 for

1
t2

, 1
t3

, 1
t4

, 1
t1

, respectively, and applying the following identity

log
1

u2
log

1

u3
+

(
− log(1− t3) + log(1− 1

t2
)

)
log

1

u2

+

(
− log(1− t1) + log(1− 1

t2
)

)
log

1

u3

=

(
− log(1− t3) + log(1− 1

t2
) + log

1

u3

)
log

1

u2

+

(
− log(1− t1) + log(1− 1

t2
)

)
log

1

u3

≡ −
(
− log(1− t3) + log(1− 1

t2
) + log

1

u3

)
log u2

+

(
− log(1− t1) + log(1− 1

t2
)

)
log

1

u3

11Note that Li2(−1) = −π
2

12
.
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= −
(
− log(1− t3) + log(1− 1

t2
)

)
log u2

+

(
− log(1− t1) + log(1− 1

t2
)− log u2

)
log

1

u3

≡ log u2 log u3 −
(
− log(1− t3) + log(1− 1

t2
)

)
log u2

−
(
− log(1− t1) + log(1− 1

t2
)

)
log u3 (mod 4π2).

The identities (25) and (26) are directly obtained from (23) and (24).
Now we assume the edge AB is collapsed to a point (see Figure 21). Then

we obtain the following relations.

{
u1 = t′1t

′′
4 ,

u2 = t′1t
′′
2 ,


t1 = u′′1u

′′
2 ,

t2 = u1u
′
2,

t4 = u′1u2,
t1t2t4 = 1.

(40)

A=B

C D

E

F

t1

t2
t4

u1

u2

Figure 21. Assignment of shape parameters when the edge
AB is collapsed

The identity (27) and the relation (40) can be obtained from (23) and (21)
by sending t3 → 1 and using the following property

lim
t→1

(log t log(1− t)) = 0.

The identities (28), (29) and (30) can be obtained from (24), (25) and (26) by
sending t4 → 1, t1 → 1 and t2 → 1, respectively. �

Proof of Theorem 1.3. Now we prove the theorem by calculating the potential
functions on each crossing n. First, consider the case in which no edge of the
octahedron on the positive crossing n is collapsed. Let the variables assigned
to the contributing sides be za, . . . , zd as in Figure 9 and let t1 = zb

za
, t2 = zc

zb
,
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t3 = zd
zc

, t4 = za
zd

as in Figure 10(a). Then the Yokota potential function of the
crossing becomes

X(za, . . . , zd) := Li2(t1)− Li2(
1

t2
) + Li2(t3)− Li2(

1

t4
)

and

X0(za, . . . , zd) = Li2(t1)− Li2(
1

t2
) + Li2(t3)− Li2(

1

t4
)(41)

+

(
− log(1− t1) + log(1− 1

t4
)

)
log za

−
(
− log(1− t1) + log(1− 1

t2
)

)
log zb

+

(
− log(1− t3) + log(1− 1

t2
)

)
log zc

−
(
− log(1− t3) + log(1− 1

t4
)

)
log zd.

Likewise, let the variables assigned to the regions be wj , . . . , wm as in Figure 9
and let u1 = wm

wj
, u2 = wk

wj
, u3 = wk

wl
, u4 = wm

wl
, u5 =

wjwl

wkwm
as in Figure 10(a).

Then the potential function of the colored Jones polynomial of the crossing
becomes Pf , which was defined in Lemma 3.1 for f = 1, . . . , 4, and

P10 = Li2(u1) + Li2(u2)− Li2(
1

u3
)− Li2(

1

u4
) + Li2(u5)− π2

6
+ log u1 log u2

(42)

+ (− log(1− u1)− log(1− u2) + log(1− u5) + log u1 + log u2) logwj

+

(
log(1− u2) + log(1− 1

u3
)− log(1− u5)− log u1

)
logwk

+

(
− log(1− 1

u3
)− log(1− 1

u4
) + log(1− u5)

)
logwl

+

(
log(1− u1) + log(1− 1

u4
)− log(1− u5)− log u2

)
logwm.

We define the remaining term Zn by the difference of two potential functions
V0 −W0 of the crossing n. In this case, Zn = X0 − P10.

Assume za, . . . , zd, wj , . . . , wm satisfy the assumption of Lemma 5.1.12 Let
U1 := − log(1− t1) + log(1− 1

t4
),

U2 := − log(1− t1) + log(1− 1
t2

),

U3 := − log(1− t3) + log(1− 1
t2

),

U4 := − log(1− t3) + log(1− 1
t4

),

12Any essential solution (za, . . . , zd) of H1 and the corresponding essential solution

(wj , . . . , wm) of H2 satisfy this assumption.
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T1 := log(1− u1) + log(1− u2)− log(1− u5)− log u1 − log u2,
T2 := − log(1− u2)− log(1− 1

u3
) + log(1− u5) + log u1,

T3 := log(1− 1
u3

) + log(1− 1
u4

)− log(1− u5),

T4 := − log(1− u1)− log(1− 1
u4

) + log(1− u5) + log u2.

Then by (21), 
U1 ≡ log u1 ≡ logwm − logwj (mod 2πi),
U2 ≡ log u2 ≡ logwk − logwj (mod 2πi),
U3 ≡ log u3 ≡ logwk − logwl (mod 2πi),
U4 ≡ log u4 ≡ logwm − logwl (mod 2πi),
T1 ≡ log t1 ≡ log zb − log za (mod 2πi),
T2 ≡ log t2 ≡ log zc − log zb (mod 2πi),
T3 ≡ log t3 ≡ log zd − log zc (mod 2πi),
T4 ≡ log t4 ≡ log za − log zd (mod 2πi),

and U1 + U3 = U2 + U4, T1 + T2 + T3 + T4 = 0. Applying these and (23) to
(41) and (42), we obtain the remaining term Zn of the crossing n as follows.

Zn = X0 − P10

≡ U1 log za − U2 log zb + U3 log zc − U4 log zd

+ T1 logwj + T2 logwk + T3 logwl + T4 logwm − U1 log u2 − U2 log u1

+ U1 log(1− u1) + U2 log(1− u2) + U3 log(1− 1

u3
)

+ U4 log(1− 1

u4
)− (U1 + U3) log(1− u5)

= T1 logwj + T2 logwk + T3 logwl + T4 logwm

+ U1

(
log za− log zd + log(1− u1) + log(1− 1

u4
)− log(1− u5)− log u2

)
+ U2

(
− log zb + log zd + log(1− u2)− log(1− 1

u4
)− log u1

)
+ U3

(
log zc − log zd + log(1− 1

u3
) + log(1− 1

u4
)− log(1− u5)

)
= T2(logwk − logwj) + T3(logwl − logwj) + T4(logwm − logwj)

+ U1 (log za − log zd − T4) + U2 (− log zb + log zd − T2 − T3)

+ U3 (log zc − log zd + T3)

≡ T2(logwk − logwj) + T3(logwl − logwj) + T4(logwm − logwj)

+ (logwm − logwj) (log za − log zd − T4)

+ (logwk − logwj) (− log zb + log zd − T2 − T3)

+ (logwk − logwl) (log zc − log zd + T3) (mod 4π2)

= − (logwj − logwm) log za − (logwk − logwj) log zb
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+ (logwk − logwl) log zc + (logwl − logwm) log zd.

By the same method, we can prove that the remaining term of the negative
crossing in Figure 9 is the same as that of the positive crossing.

Now we consider the case in which only one horizontal edge is collapsed in
an octahedron on a positive crossing n. Let the region assigned to rl be the
unbounded region and zc = zd = 1 in Figure 9. Also, let t1 = zb

za
, t2 = 1

zb
,

t4 = za and u1 = wm

wj
, u2 = wk

wj
. Then the Yokota potential function of the

crossing becomes

X(za, zb) := Li2(t1)− Li2(
1

t2
)− Li2(

1

t4
) +

π2

6

and

X0(za, zb) = Li2(t1)− Li2(
1

t2
)− Li2(

1

t4
) +

π2

6
(43)

+

(
− log(1− t1) + log(1− 1

t4
)

)
log za

−
(
− log(1− t1) + log(1− 1

t2
)

)
log zb.

The potential function of the colored Jones polynomial of the crossing becomes

Y (wj , wk, wm) := P1(wj , wk, 0, wm) = Li2(u1) + Li2(u2)− π2

6
+ log u1 log u2

and

Y0(wj , wk, wm) = Li2(u1) + Li2(u2)− π2

6
+ log u1 log u2

(44)

+ (− log(1− u1)− log(1− u2) + log u1 + log u2) logwj

+ (log(1− u2)− log u1) logwk

+ (log(1− u1)− log u2) logwm.

In this case, the remaining term is Zn = X0 − Y0. Let{
U1 := − log(1− t1) + log(1− 1

t4
),

U2 := − log(1− t1) + log(1− 1
t2

), T1 := log(1− u1) + log(1− u2)− log u1 − log u2,
T2 := − log(1− u2) + log u1,
T4 := − log(1− u1) + log u2.

Then by (40), {
U1 ≡ log u1 ≡ logwm − logwj (mod 2πi),
U2 ≡ log u2 ≡ logwk − logwj (mod 2πi),
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T2 ≡ log t2 ≡ − log zb (mod 2πi),
T4 ≡ log t4 ≡ log za (mod 2πi),

and T1 +T2 +T4 = 0. Applying these and (27) to (43) and (44), we obtain the
remaining term Zn as follows.

Zn = X0 − Y0
≡ U1 log za − U2 log zb + T1 logwj + T2 logwk + T4 logwm − U1T4 − U2T2

= U1 log za − U2 log zb + T2(logwk−logwj − U2)+T4(logwm−logwj − U1)

≡ U1 log za − U2 log zb

− log zb(logwk − logwj − U2) + log za(logwm − logwj − U1) (mod 4π2)

= − (logwj − logwm) log za − (logwk − logwj) log zb.

By the same method, we can prove the remaining term of the negative crossing
in this case is the same as that of the positive crossing. On the other hand, the
remaining term becomes

Zn = −(logwk − logwj) log zb + (logwk − logwl) log zc

when the region assigned to wm is the unbounded region,

Zn = (logwk − logwl) log zc + (logwl − logwm) log zd

when the region assigned to wj is the unbounded region, and

Zn = −(logwj − logwm) log za + (logwl − logwm) log zd

when the region assigned to wk is the unbounded region.
Now we consider the case when the crossing point n is the endpoint of I or

J . There are four cases as in Figure 22. We only prove the case of Figure 22(a)
because the others can be proved by the same method.

First, we assume all three regions in Figure 22(a) are bounded. Then in
Figure 10(a), the edge BnEn is collapsed to a point and zd

zc
, za
zd

, wm

wj
,
wj

wl
are

assigned to the edges CnDn, DnAn, AnFn, CnFn, respectively. Also, we obtain

(45)
zd
zc

=

(
wj
wl

)′′
= 1− wl

wj
and

wm
wj

=

(
za
zd

)′′
= 1− zd

za
.

Applying (45) to Yokota potential function X(za, zc, zd) := Li2( zdzc )− Li2( zdza ),
we obtain

X0 = Li2(
zd
zc

)− Li2(
zd
za

) + log(1− zd
za

) log za − log(1− zd
zc

) log zc

−
(
− log(1− zd

zc
) + log(1− zd

za
)

)
log zd

= Li2(
zd
zc

)−Li2(1− wm
wj

)+log
wm
wj

(log za − log zd)+log
wl
wj

(log zd − log zc).



OPTIMISTIC LIMITS OF THE COLORED JONES POLYNOMIALS 683

�
�

�
�
�	 R

@
@@

wj

wl

wm

zd zc

za 1

(a)

@
@
@
@
@R

�
��

	 wj

wk

wl
zd zc

1 zb

(b)

@
@@R

@
@@
�

��	 wj

wkwm

1

za zb

zd

(c)

�
��	

�
��

@
@@Rwj

wk

wl
zc

za zb

1

(d)

Figure 22. Four cases of the endpoint of I or J

Also, applying (45) to the potential function of the colored Jones polynomial
Y (wj , wl, wm) := P1(wj , wj , wl, wm) = Li2(wm

wj
)− Li2(wl

wj
), we obtain

Y0 = Li2(
wm
wj

)− Li2(
wl
wj

)−
(

log(1− wm
wj

)− log(1− wl
wj

)

)
logwj

− log(1− wl
wj

) logwl + log(1− wm
wj

) logwm

= Li2(
wm
wj

)−Li2(1− zd
zc

)−log
zd
za

(logwj − logwm)−log
zd
zc

(logwl − logwj).

Using the well-known identity Li2(z) + Li2(1 − z) = π2

6 − log z log(1 − z) for
z ∈ C− {0, 1} from [6], we obtain the remaining term

Zn = X0 − Y0

≡ − log
zd
zc

log
wl
wj

+ log
wm
wj

log
zd
za

+ log
wm
wj

(log za − log zd) + log
wl
wj

(log zd − log zc)

+ log
zd
za

(logwj − logwm) + log
zd
zc

(logwl − logwj)

= log
wl
wj

(− log
zd
zc

+ log zd − log zc) + log
wm
wj

(log
zd
za

+ log za − log zd)

+ log
zd
za

(logwj − logwm) + log
zd
zc

(logwl − logwj)
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≡ (logwl − logwj)

(
− log

zd
zc

+ log zd − log zc

)
+ (logwm − logwj)

(
log

zd
za

+ log za − log zd

)
+ log

zd
za

(logwj − logwm) + log
zd
zc

(logwl − logwj) (mod 4π2)

= − (logwj − logwm) log za + (logwj − logwl) log zc

+ (logwl − logwm) log zd.

Finally, we consider the case when the region assigned with wl in Figure
22(a) is unbounded. Then the edges BnEn and CnDn are collapsed to points.
Furthermore, zc = zd = 1 and wl = 0, and za, wm

wj
are assigned to the edges

DnAn, AnFn in Figure 10(a), respectively. Applying

wm
wj

= z′′a = 1− 1

za

to Yokota potential function X(za) := −Li2( 1
za

) + π2

6 , we obtain

X0 = −Li2(
1

za
) +

π2

6
+ log(1− 1

za
) log za = −Li2(

1

za
) +

π2

6
+ log

wm
wj

log za,

and to the potential function of the colored Jones polynomial Y (wj , wm) :=
P1(wj , wj , 0, wm) = Li2(wm

wj
), we obtain

Y0 = Li2(
wm
wj

) + log(1− wm
wj

)(logwm − logwj)

= Li2(1− 1

za
) + log

1

za
(logwm − logwj).

Therefore, we obtain the remaining term

Zn := X0 − Y0 ≡ log
1

za
log

wm
wj

+ log
wm
wj

log za − log
1

za
(logwm − logwj)

= log
1

za
(log

wm
wj
− logwm + logwj) + log

wm
wj

log za

≡ − log za(log
wm
wj
− logwm + logwj) + log

wm
wj

log za (mod 4π2)

= −(logwj − logwm) log za.

Likewise, we can show the remaining term becomes

Zn = (logwl − logwm) log zd

when the region assigned to wm in Figure 22(a) is unbounded. The remaining
three cases in Figure 22 can be obtained by the same method.

We complete the proof by proving∑
n : crossings of G

Zn = 0.
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Note that we defined a contributing side of G in Section 3.1. Assume the side
assigned by za in Figure 23 is a contributing side of G (This means that za 6= 1).

�
wm

wj
za

Figure 23. Contributing side assigned by za

If the side goes out of the crossing point n1, then the coefficient of log za in
Zn1

is −(logwj − logwl), and if the side goes into the crossing point n2, then
the coefficient of log za in Zn2

is (logwj − logwl). They are cancelled by each
other, and this happens for all the contributing sides. �

Appendix A. Appendix

A.1. Formal substitution of the colored Jones polynomial and the
potential function

In this Appendix, we induce the potential function W (w1, . . . , wm) defined
in Section 3.2 from the formal substitution (1) of the colored Jones polynomial.

The colored Jones polynomial is determined by the R-matrix and the local
maxima/minima (see [8] for reference). However, as seen in (1), the local
maxima/minima do not have an effect on the formal substitution. So we only
consider the R-matrix of the colored Jones polynomial:

Rj,kl,m = δm,j−hδl,k+h
(q−1)j(q

−1)−1k
(q−1)h(q−1)−1l (q−1)m

(−1)k+m+1q−km−(k+m+1)/2,

(R−1)j,kl,m = δm,j+hδl,k−h
(q)−1j (q)k

(q)h(q)l(q)
−1
m

(−1)j+l+1qjl+(j+l+1)/2,

where j, k, l,m, h ∈ {0, 1, . . . , N − 1} and δj,k is the Kronecker’s delta. If

Rj,kl,m 6= 0, then h is uniquely determined by the formula h = j−m = l−k, and

if (R−1)j,kl,m 6= 0, then h = m− j = k − l.
Note that this R-matrix is the inverse of the one in [8]. This implies the

colored Jones polynomial of a knot K here is the one of the mirror image K in
[8]. This choice is natural to [17] and Theorem 1.3.

Let K be the hyperbolic knot with a fixed diagram and G be the diagram
defined in Section 2.1 with the orientation from J to I. We assign 0 to one
bounded region of G, then assign variables r1, . . . , rm ∈ {0, 1, . . . , N−1} to the
remaining bounded regions of G and rm+1 ∈ {0, 1, . . . , N−1} to the unbounded
region. We assign variables to each side according to the signed sum of variables
of adjacent regions with orientations modulo N (see Figure 24 for an example).
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r1

r2

r5
r3

r4

0

r1 - r5

r2 - r1
-r5

r2

r3

r3 - r5

r4 - r5

r2 - r3

r2 - r4

Figure 24. Assigning variables to each region and side

For each non-trivalent vertex of G, we assign the R-matrix to the positive
crossing and the inverse to the negative crossing. Then we apply the formal
substitution (1) to each R-matrix and substitute qrn to wn as below. In the
substitution process, if rn = 0, then we put wn = 1. Note that we apply
the same R-matrix or its inverse in different forms according to the position
of the collapsed horizontal edge. If none of the horizontal edges are collapsed
in the octahedron, then we choose any formal substitution among the four
possibilities. For positive crossings:

�
�
�

�
�	

@
@@

@
@@Rrj

rk

rl

rm

rl − rm rk − rl

rj − rm rk − rj

............................................................. ...... ...... ...... ...... ............
............
............
............
............ :

(q)rl−rm(q−1)−1rk−rl
(q)rj+rl−rk−rm(q−1)−1rj−rm(q)rk−rj

(−1)rl+rj+1

×q(rm−rj)(rk−rj)−(2rk−rl−rj+1)/2

∼ exp
{
N
2πi

(
−Li2( wl

wm
)− Li2( wl

wk
) + Li2(

wjwl

wkwm
) + Li2(wm

wj
) + Li2(wk

wj
)− π2

6 + log wm

wj
log wk

wj

)}
,

�
�

�
�
�	

@
@@

@
@@Rrj

rk

rl

rm

rl − rm rk − rl

rj − rm rk − rj

............. ...... ...... ...... ...... ............
............
............
............
............

................................................
:

(q−1)rl−rm(q−1)−1rk−rl
(q−1)rj+rl−rk−rm(q−1)−1rj−rm(q−1)rk−rj

(−1)rl+rj+1

×q−(rk−rl)(rk−rj)−(2rk−rl−rj+1)/2

∼ exp
{
N
2πi

(
Li2(wm

wl
)− Li2( wl

wk
)− Li2(wkwm

wjwl
) + Li2(wm

wj
)− Li2(

wj

wk
) + π2

6 − log wk

wl
log wk

wj

)}
,
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�
�

�
�
�	

@
@@

@
@@Rrj

rk

rl

rm

rl − rm rk − rl

rj − rm rk − rj

.............
............
............
............

................................................................................................
:

(q−1)rl−rm(q)−1rk−rl
(q)rj+rl−rk−rm(q)−1rj−rm(q−1)rk−rj

(−1)rl+rj+1

×q(rm−rl)(rk−rl)−(2rk−rl−rj+1)/2

∼ exp
{
N
2πi

(
Li2(wm

wl
) + Li2(wk

wl
) + Li2(

wjwl

wkwm
)− Li2(

wj

wm
)− Li2(

wj

wk
)− π2

6 + log wm

wl
log wk

wl

)}
,

�
�

�
�
�	

@
@@

@
@@Rrj

rk

rl

rm

rl − rm rk − rl

rj − rm rk − rj

............................................................................................................. ...... ...... ...... ...... ............
:

(q)rl−rm(q)−1rk−rl
(q−1)rj+rl−rk−rm(q)−1rj−rm(q)rk−rj

(−1)rl+rj+1

×q−(rm−rl)(rm−rj)−(rl+rj−2rm+1)/2

∼ exp
{
N
2πi

(
−Li2( wl

wm
) + Li2(wk

wl
)− Li2(wkwm

wjwl
)− Li2(

wj

wm
) + Li2(wk

wj
) + π2

6 − log wm

wl
log wm

wj

)}
.

For negative crossings:

@
@
@
@
@R

�
��

�
��	 rj

rk

rl

rm

rl − rm rk − rl

rj − rm rk − rj

............................................................. ...... ...... ...... ...... ............
............
............
............
............ :

(q)−1rl−rm(q−1)rk−rl

(q−1)rk+rm−rj−rl(q
−1)rj−rm(q)−1rk−rj

(−1)rl+rj+1

×q−(rj−rm)(rj−rk)+(rl+rj−2rm+1)/2

∼ exp
{
N
2πi

(
Li2( wl

wm
) + Li2( wl

wk
)− Li2(

wjwl

wkwm
)− Li2(wm

wj
)− Li2(wk

wj
) + π2

6 − log
wj

wm
log

wj

wk

)}
,

@
@
@
@
@R

�
��

�
��	 rj

rk

rl

rm

rl − rm rk − rl

rj − rm rk − rj

............. ...... ...... ...... ...... ............
............
............
............
............

................................................
:

(q−1)−1rl−rm(q−1)rk−rl

(q)rk+rm−rj−rl(q
−1)rj−rm(q−1)−1rk−rj

(−1)rl+rj+1

×q(rl−rk)(rj−rk)+(2rk−rl−rj+1)/2

∼ exp
{
N
2πi

(
−Li2(wm

wl
) + Li2( wl

wk
) + Li2(wkwm

wjwl
)− Li2(wm

wj
) + Li2(

wj

wk
)− π2

6 + log wl

wk
log

wj

wk

)}
,
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@
@
@
@
@R

�
��

�
��	 rj

rk

rl

rm

rl − rm rk − rl

rj − rm rk − rj

.............
............
............
............

................................................................................................
:

(q−1)−1rl−rm(q)rk−rl

(q−1)rk+rm−rj−rl(q)rj−rm(q−1)−1rk−rj
(−1)rl+rj+1

×q−(rl−rm)(rl−rk)+(rl+rj−2rm+1)/2

∼ exp
{
N
2πi

(
−Li2(wm

wl
)− Li2(wk

wl
)− Li2(

wjwl

wkwm
) + Li2(

wj

wm
) + Li2(

wj

wk
) + π2

6 − log wl

wm
log wl

wk

)}
,

@
@
@
@
@R

�
��

�
��	 rj

rk

rl

rm

rl − rm rk − rl

rj − rm rk − rj

............................................................................................................. ...... ...... ...... ...... ............
:

(q)−1rl−rm(q)rk−rl

(q)rk+rm−rj−rl(q)rj−rm(q)−1rk−rj
(−1)rl+rj+1

×q(rl−rm)(rj−rm)+(rl+rj−2rm+1)/2

∼ exp
{
N
2πi

(
Li2( wl

wm
)− Li2(wk

wl
) + Li2(wkwm

wjwl
) + Li2(

wj

wm
)− Li2(wk

wj
)− π2

6 + log wl

wm
log

wj

wm

)}
.

For the trivalent vertices of G, we assign 0 to the sides in I or J , then apply
the same formal substitution to the R-matrix as follows (here, we use the same
form of the R-matrix disregarding whether certain horizontal edge is collapsed
or not).

For the endpoint of I:

�
�
�

�
�	 R

@
@@

rj

rl

rm

rl − rm rj − rl

rj − rm 0

:
(q−1)rj−rm
(q−1)rj−rl

(−1)rl+rj+1q−(rj−rl+1)/2

∼ exp
{
N
2πi

(
Li2(wm

wj
)− Li2(wl

wj
)
)}

,

@
@
@
@
@R

�
��

	 rj

rl

rk

rl − rj rk − rl

0 rk − rj

:
(q)rk−rj
(q)rl−rj

(−1)rl+rj+1q(rl−rj−1)/2

∼ exp
{
N
2πi

(
−Li2(wk

wj
) + Li2(wl

wj
)
)}

.

For the endpoint of J :
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@
@@R

@
@@
�
��	 rj

rkrm

0

rj − rm rk − rj

rk − rm

:
(q−1)rk−rm
(q−1)rk−rj

(−1)rk+rj+1q−(rk−rj+1)/2

∼ exp
{
N
2πi

(
Li2(wm

wk
)− Li2(

wj

wk
)
)}

,

�
��	

�
��

@
@@Rrj

rk

rl
rk − rl

rj − rl rk − rj

0

:
(q)rk−rl
(q)rj−rl

(−1)rl+rj+1q(rj−rl+1)/2

∼ exp
{
N
2πi

(
−Li2(wk

wl
) + Li2(

wj

wl
)
)}

.

Note that the colored Jones polynomial is expressed by the products of var-
ious forms of the R-matrices of crossings or trivalent vertices of G (with slight
modification by the local maxima/minima) and summed over all the possible
indices r1, . . . , rm+1 (see [8] for the calculation of the colored Jones polynomial;
the description in [8] may look slightly different from ours, but removing the
sides of the tangle diagram assigned with 0 in [8] gives the diagram G). Now we

define a potential function W̃ (w1, . . . , wm+1) of the knot diagram by letting the

product of all formal substitutions of G to be exp
{
N
2πiW̃ (w1, . . . , wm+1)

}
. One

important property of W̃ is that the variable wm+1 assigned to the unbounded
region appears only in the numerator. Therefore, we can define another poten-

tial function W (w1, . . . , wm) := W̃ (w1, . . . , wm, 0),13 which coincides with the
potential function W (w1, . . ., wm) defined in Section 3.2.

For example, W̃ and W of Figure 24 become

W̃ (w1, . . . , w5) =

{
Li2(

1

w2
)− Li2(

w3

w2
)

}
+

{
Li2(

w5

w3
)− Li2(

1

w3
)

}
+

{
−Li2(

w5

w4
) + Li2(

w4

w2
) + Li2(

w5w2

w4w3
)− Li2(

w5

w3
)

+Li2(
w3

w2
)− π2

6
+ log

w4

w2
log

w3

w2

}
+

{
−Li2(

w5

w1
) + Li2(

w1

w2
) + Li2(

w5w2

w1w4
)− Li2(

w5

w4
)

+Li2(
w4

w2
)− π2

6
+ log

w1

w2
log

w4

w2

}
+

{
−Li2(w5) + Li2(

1

w2
) + Li2(

w5w2

w1
)− Li2(

w5

w1
)

13Note that Li2(0) = 0.
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+Li2(
w1

w2
)− π2

6
+ log

1

w2
log

w1

w2

}
,

and

W (w1, . . . , w4) = 2

{
Li2(

1

w2
) + Li2(

w4

w2
) + Li2(

w1

w2
)

}
− Li2(

1

w3
)− π2

2

+ log
w4

w2
log

w3

w2
+ log

w1

w2
log

w4

w2
+ log

1

w2
log

w1

w2
.

This potential functionW (w1, . . . , w4) coincides with the one defined previously
in (5).

Note that using W instead of W̃ does not violate the formulation of the

optimistic limit because, for a solution (w
(0)
1 , . . . , w

(0)
m ) of

H2 =

{
exp

(
wl
∂W

∂wl

)
= 1 | l = 1, . . . ,m

}
,

(w
(0)
1 , . . . , w

(0)
m , 0) becomes a solution of

H̃2 :=

{
exp

(
wl
∂W̃

∂wl

)
= 1 | l = 1, . . . ,m+ 1

}
.

We are considering only the solutions of H̃2 with the condition wm+1 = 0
because this condition corresponds to the collapsing process of tetrahedra of
Thurston triangulation in Section 2.2 and the solutions correspond to the tri-
angulation. However, other solutions with the condition wm+1 6= 0 also have
good geometric meanings and this will be discussed in later papers.

A.2. Inessential solutions induced by essential solutions

Let z and w be the solutions in Lemma 1.2. In this Appendix, we determine
the condition when an essential solution induces an inessential solution. Note
that solutions z and w uniquely determine shape parameters of ideal tetrahedra
in Yokota triangulation and in Thurston triangulation, respectively, and that,
by definition, essential solution determines the shape parameters with none of
them belonging to {0, 1,∞}. Therefore, we focus on the shape parameters of
each triangulation. We call the set of shape parameters of ideal tetrahedra
essential when no elements of it belongs to {0, 1,∞}.

Note that the shape parameters of two triangulations are determined by
the local picture at each crossings and that, from Observation 2.1, what we
have to consider are 3-2 moves and 4-5 moves at the crossings. Consider the
two cases of Figure 20 and Figure 21, which correspond to 4-5 move and 3-2
move, respectively, and for which we have the determining relations of shape
parameters in (21) and in (40), respectively.
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Lemma A.1. (1) In Figure 21, if {t1, t2, t4} is essential, then {u1, u2} is
essential. Conversely, if {u1, u2} is essential, then {t1, t2, t4} is essen-
tial if and only if

(46) u1 + u2 = 1.

(2) In Figure 20, if {t1, t2, t3, t4} is essential, then {u1, u2, u3, u4, u5} is
essential if and only if

(47) t1−
1

t2
6= 0,

1

t2
− t3 6= 0, t3−

1

t4
6= 0,

1

t4
− t1 6= 0, t1−

1

t2
+ t3−

1

t4
6= 0

(Note that u5 = 1
u1u3

= 1
u2u4

). Conversely, if {u1, u2, u3, u4, u5} is

essential, then {t1, t2, t3, t4} is essential if and only if
1
u1

+ 1
u2
− 1

u1u2
6= u5,

u2 + u3 − u2u3 6= 1
u5
,

1
u3

+ 1
u4
− 1

u3u4
6= u5,

u4 + u1 − u4u1 6= 1
u5
.

(48)

Proof. From the relations (40) and (21), if one of the sets {t1, t2, t3, t4} and
{u1, u2, u3, u4, u5} is essential, then the shape parameters of the other set are
expressed by products of nonzero and non-infinity numbers. This implies any
shape parameter in the other set cannot be zero nor infinity. Therefore, what
we have to check is the case when tk = 1 or ul = 1 for some k, l.

Consider Figure 21. Assume {t1, t2, t4} is essential and u1 = 1. Then from
u1 = t′1t

′′
4 = 1, we obtain t1t4 = 1. Using t1t2t4 = 1, this induces t2 = 1, which

contradicts the essentiality of {t1, t2, t4}. The case when u2 = 1 is the same.
Conversely, assume {u1, u2} is essential. By direct calculation from (40), we

obtain

t1 = u′′1u
′′
2 = 1 ⇐⇒ u1 + u2 = 1 ⇐⇒ t2 = u1u

′
2 = 1 ⇐⇒ t4 = u′1u2 = 1.

Now consider Figure 20. Assume {t1, t2, t3, t4} is essential. Then direct
calculation from (21) shows (47) is equivalent to

u2 6= 1, u3 6= 1, u4 6= 1, u1 6= 1, u5 6= 1.

For example, using t1t3 = 1
t2t4

, we have

u5 = (t′1t
′′
2 t
′
3t
′′
4)−1 = 1 ⇐⇒ (1− 1

t2
)(1− 1

t4
) = (1− t1)(1− t3)

⇐⇒ t1 −
1

t2
+ t3 −

1

t4
= 0.

Conversely, assume {u1, u2, u3, u4, u5} is essential. Then direct calculation
from (21) shows (48) is equivalent to

t1 6= 1, t2 6= 1, t3 6= 1, t4 6= 1. �
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From the above, if the essential solution z in Lemma 1.2 determines the
shape parameters of Yokota triangulation that satisfy the conditions (47) in
Lemma A.1, then the corresponding solution w is also essential. Conversely, the
essential solution w in Lemma 1.2 determines the shape parameters of Thurston
triangulation that satisfy the conditions (46) and (48) in Lemma A.1, then the
corresponding solution z is also essential. We expect these conditions hold for
almost all cases. For example, the essential solutions z and w of twist knots in
[3] and [2], and the geometric solutions w of the two-bridge knots in [13] satisfy
these conditions. Furthermore, if every octahedron in the Yokota triangulation
has a collapsed horizontal edge, then the essential solution z always satisfies the
condition. Therefore, essential solutions z coming from the standard diagrams
of 2-bridge knots in [13] always induce the essential solutions w.
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