J. Korean Math. Soc. ${\bf 50}$ (2013), No. 3, pp. 579–589 http://dx.doi.org/10.4134/JKMS.2013.50.3.579

ON MINIMAL NON-NSN-GROUPS

ZHANGJIA HAN, GUIYUN CHEN, AND HUAGUO SHI

ABSTRACT. A finite group G is called an NSN-group if every proper subgroup of G is either normal in G or self-normalizing. In this paper, the non-NSN-groups whose proper subgroups are all NSN-groups are determined.

1. Introduction

The structure of the group whose subgroups are all normal (called a Dedekind group or a Hamiltonian group) has been completely classified by R. Dedekind, E. Wendt and R. Bare (see [9, Theorem 5.3.7]). Since then, many authors have dealt with generalizations of such kind of groups. We mention some of them here. Pic [8] considered finite groups in which every subgroup S is quasinormal, that is, S satisfies SH = HS for all subgroups H of G, and Walls [11] studied groups with maximal subgroups of Sylow subgroups that are normal in G. Buckley et al. [2] dealt with groups in which all subgroups form at most two conjugate classes and Brandl [1] classified groups all of whose non-normal subgroups are conjugates.

If N is a normal subgroup of G, then N is normalized by all elements of G. For a normal subgroup, the number of elements of G normalizing N is up to maximum. On the other hand, if $N_G(N) = N$ for a proper subgroup N of G, then the number of elements of G normalizing N is up to minimum. Thus in some sense, the properties $N \trianglelefteq G$ and $N_G(N) = N$ can be viewed as two extreme cases in considering the number of elements normalizing N in G. Let \mathscr{X} be a property of a group. A group G is called an \mathscr{X} -critical group or a minimal non- \mathscr{X} -group if G is not an \mathscr{X} -group but every proper subgroup of G is an \mathscr{X} -group. There are many remarkable examples of minimal non- \mathscr{X} -groups:

O2013 The Korean Mathematical Society

579

Received July 29, 2012; Revised October 10, 2012.

²⁰¹⁰ Mathematics Subject Classification. 20D35, 20E34.

Key words and phrases. a normal subgroup, a self-normalizing subgroup, an NSN-group, a minimal non-NSN-group.

This work is supported by the National Scientific Foundation of China(No:11271301) and the National Scientific Foundation of China(No:11001226) and Scientific Research Foundation of SiChuan Provincial Education Department(No:11ZB174) and Scientific Research Foundation of SiChuan Provincial Education Department(No:12ZB018) and Post-doctoral Foundation of Chongqing(CQXM201103016).

minimal non-abelian groups (Miller and Moreno, [7]), minimal non-nilpotent groups (Schmidt), minimal non-supersoluble groups ([4]) and minimal non-pnilpotent groups (Itô).

A group G whose every subgroup N has extreme numbers of elements normalizing N, that is, either $N_G(N) = G$ or $N_G(N) = N$, is called an NSN-group. The structure of NSN-groups has been investigated in [12]. In this paper, by applying the properties of an NSN-group, we classify all the minimal non-NSNgroups.

We first introduce the following definitions.

Definition 1.1. Let G be a finite group. Then G is called an NSN-group if every subgroup N of G is either normal in G or self-normalizing, that is, either $N_G(N) = G$ or $N_G(N) = N$.

Definition 1.2. A group G is called a minimal non-NSN-group if every proper subgroup of G is an NSN-group but G itself is not an NSN-group.

Our main results are as follows:

Main Theorem. Suppose that G is a finite minimal non-NSN-group. Then G is solvable and G is isomorphic to one of the following groups:

(1) $G = \langle x, y_1, y_2, \dots, y_b | x^{p^a} = y_1^q = y_2^q = \dots = y_b^q, y_i y_j = y_j y_i, i, j = 1, 2, \dots, b, y_i^x = y_{i+1}, i = 1, 2, \dots, b-1, y_b^x = y_1^{d_1} y_2^{d_2} \cdots y_b^{d_b} \rangle, where f(z) = z^b - d_b z^{b-1} - \dots - d_2 z - d_1 \text{ is irreducible in } F_q \text{ and } f(z) | z^{p^a} - 1.$ (2) $G = \langle a, b, c | a^{p^m} = b^{p^n} = c^p = 1, ba = abc, ca = ac, cb = bc \rangle, where m$

and n are natural numbers.

(3) $G = \langle a, b \mid a^{p^m} = b^{p^n} = 1, ba = a^{1+p^{m-1}}b \rangle$, where m and n are natural numbers and m > 2.

(4) $G = \langle a, \overline{b}, \overline{c} \mid a^{3m} = b^4 = c^4 = 1, \ b^2 = c^2, \ cb = b^{-1}c, \ a^{-1}ba = c.$ $a^{-1}ca = cb\rangle$, where m and n are natural numbers.

(5) $G = \langle a, b \mid a^8 = 1, b^2 = a^4, b^{-1}ba = a^{-1} \rangle.$

(6) G = PQ, $P \leq G$, P is an elementary abelian p-group of rank > 1, Q is cyclic, and Q acts irreducibly on P.

(7) $G = Q_8 \rtimes C_{3^m}$ and $Z(G) = \Omega_1(Q_8) \Phi(C_{3^m})$.

In the following (8)-(11), p and q are distinct primes and p > q.

(8) $G = \langle a, b, c \mid a^q = b^q = 1, c^p = 1, a^{-1}ca = c^r, [b, a] = [b, c] = 1, r \neq 1$ (mod p), $r^q \equiv 1 \pmod{p}$.

(9) $G = \langle a, b, c \mid a^{q^n} = b^q = 1, c^p = 1, a^{-1}ca = c^r, [b, a] = [b, c] = 1, r \neq 1$ (mod p), $r^q \equiv 1 \pmod{p}$, n > 1).

(10) $G = \langle a, b \mid a^{q^n} = 1, b^p = 1, a^{-1}ba = b^r \rangle$, where n > 1 and the order of $r modulo p is q^2$.

(11) $G = \langle a, b, c \mid a^p = b^p = 1, c^{q^n} = 1, c^{-1}ac = a^r, [b, a] = [b, c] = 1,$ $r \not\equiv 1 \pmod{p}, r^q \equiv 1 \pmod{p}$

(12) $G = C_p \times (C_r \rtimes C_{q^n})$, where p, q and r are distinct primes. Moreover, $Z(G) = C_p \times \Phi(C_{q^m}).$

580

(13) $G = C_r \rtimes (C_p \times C_q)$, where p, q and r are distinct primes, r > q > p, and Z(G) = 1.

Throughout this paper, only finite groups are considered and all our notations are standard. For example, we denote by $A \rtimes P$ the semidirect product of A and P; C_n denotes a cyclic group of order n and $\pi(G)$ denotes the set of all prime divisors of |G|. All unexplained notations can be found in [5] and [9].

2. Some preliminaries

In this section, we collect some lemmas which will be frequently used in the sequel.

Lemma 2.1 ([5, 7.2.2]). Suppose that the Sylow p-subgroups of G are cyclic, where p is the smallest prime divisor of |G|. Then G has a normal p-complement.

Lemma 2.2 ([6]). Suppose that p'-group H acts on a p-group G. Let

$$\Omega(G) = \begin{cases} \Omega_1(G) & p > 2, \\ \Omega_2(G) & p = 2. \end{cases}$$

If H acts trivially on $\Omega(G)$, then H acts trivially on G as well.

Lemma 2.3 (Maschke's Theorem, [5, 8.4.6]). Suppose that the action of A on an elementary abelian group G is coprime and H is an A-invariant direct factor of G. Then H has an A-invariant complement in G.

Lemma 2.4 ([10]). If G is a minimal nonabelian simple group, i.e. a nonabelian simple group all of whose proper subgroups are solvable, then G is isomorphic to one of the following simple groups:

- (1) PSL(2,p), where p is a prime with p > 3 and $5 \nmid p^2 1$.
- (2) $PSL(2, 2^q)$, where q is a prime.
- (3) $PSL(2, 3^q)$, where q is a prime.
- (4) PSL(3,3).
- (5) The Suzuki group $Sz(2^q)$, where q is an odd prime.

In proving our main theorem, the following result will be frequently used.

Lemma 2.5 ([12, Main Theorem]). Let G be a finite group. Then all subgroups of G are either normal or self-normalizing if and only if either

(1) G is a Dedekind group, or

(2) $G = H \rtimes P$, where H is an abelian normal Hall p'-subgroup and $P = \langle x \rangle \in Syl_p(G), \langle x^p \rangle = O_p(G) = Z(G)$, where p is the minimal prime dividing the order of G. Furthermore, x induces a fixed-point-free power automorphism of order p on H.

3. Proof of Main Theorem

We first note that the classification of minimal non-Dedekind groups was given in [3] and [7]. We list them in the following lemma.

Lemma 3.1. Let G be a minimal non-Dedekind group. Then G is solvable and G is isomorphic to one of the following groups:

(1) $G = \langle x, y_1, y_2, \dots, y_b | x^{p^a} = y_1^q = y_2^q = \dots = y_b^q, y_i y_j = y_j y_i, i, j = 1, 2, \dots, b, y_i^x = y_{i+1}, i = 1, 2, \dots, b-1, y_b^x = y_1^{d_1} y_2^{d_2} \cdots y_b^{d_b} \rangle, where f(z) = z^b - d_b z^{b-1} - \dots - d_2 z - d_1 \text{ is irreducible in } F_q \text{ and } f(z) | z^{p^a} - 1.$ (2) $G = \langle a, b, c | a^{p^m} = b^{p^n} = c^p = 1, ba = abc, ca = ac, cb = bc \rangle, where m$

and n are natural numbers.

(3) $G = \langle a, b \mid a^{p^m} = b^{p^n} = 1, ba = a^{1+p^{m-1}}b \rangle$, where m and n are natural numbers and $m \geq 2$.

(4) $G = \langle a, b, c \mid a^{3m} = b^4 = c^4 = 1, b^2 = c^2, cb = b^{-1}c, a^{-1}ba = c, a^{-1}ca = c^{-1}ca = c^{$ $cb\rangle$, where m and n are natural numbers (minimal non-3-closed groups).

(5) $G = \langle a, b \mid a^8 = 1, b^2 = a^4, b^{-1}ba = a^{-1} \rangle.$

By Lemma 3.1, it is enough to discuss minimal non-NSN-groups which are not minimal non-Dedekind groups. By Lemma 2.5, in what follows, every Sylow subgroup of G is a Dedekind 2-group or an abelian group of odd order. We will use this fact frequently in our following proof.

Lemma 3.2. Let G be a minimal non-NSN-group. Then G is solvable.

Proof. Suppose that G is not solvable. By Lemma 2.5, every proper subgroup of G is solvable and hence $G/\Phi(G)$ is a minimal simple group, where $\Phi(G)$ is the Frattini subgroup of G. Let H be the 2-complement of $\Phi(G)$. Then $H \leq G$ and H is abelian since H is an NSN-group of odd order. We have following claims.

(1) H = 1.

Consider $H \neq 1$. Let $P \in Syl_p(H)$, where p is any prime in $\pi(H)$. Then $P \trianglelefteq G$. Let $S_2 \in Syl_2(G)$ and $K = S_2P$. Then K is a proper subgroup of G, and hence K is an NSN-group by hypothesis. If K is an NSN-group as in (2) of Lemma 2.5, then S_2 is cyclic, which concludes that G has normal 2-complement, a contradiction. Hence we may assume that K is nilpotent. But it follows in this case that $S_2 \leq C_G(P) \leq G$. Using the simplicity of $G/\Phi(G)$, we conclude that $S_2 \leq C_G(P)\Phi(G)$, which concludes that G is solvable, a contradiction.

(2) Every subgroup of order $2^m p$ (p an odd prime) of $\overline{G} = G/\Phi(G)$ is 2nilpotent.

Assume that G possesses a subgroup L containing $S_0 = \Phi(G)$ such that L/S_0 is not a 2-nilpotent group of order $2^m p$. Then L contains a minimal non-2-nilpotent subgroup D with order $2^n p$ for some natural number n. Hence $D = S^*P$ is a minimal non-nilpotent group with a normal Sylow 2-subgroup S^* and |P| = p. Since given that G is non-solvable, D is a proper subgroup of G, D is an NSN-group by the hypothesis. Hence D is nilpotent by Lemma 2.5, a contradiction.

(3) Conclusion.

Now, we assert that there is no simple group listed in Lemma 2.4 isomorphic to \overline{G} . Then we get that G is solvable. In fact, if \overline{G} is isomorphic to one of PSL(2, p), $PSL(2, 3^q)$ or PSL(3, 3), then \overline{G} has a subgroup isomorphic to A_4 , the alternating group of degree 4, a contradiction to (2). If $\overline{G} \cong PSL(2, 2^q)$ or $Sz(2^q)$, then \overline{G} is a Zassenhaus group of odd degree and the stabilizer of a point is a Frobenius group with kernel a 2-group, again a contradiction to (2). Hence \overline{G} cannot be any one of $PSL(2, 2^q)$ nor $Sz(2^q)$. Thus the proof is completed. \Box

By Lemma 3.2, we always assume in the following that G is a solvable minimal non-NSN-group.

Lemma 3.3. Let G be a minimal non-NSN-group. Then there exist at most two distinct primes $p, q \in \pi(G)$ such that the Sylow p-subgroup and the Sylow q-subgroup of G are not normal in G.

Proof. Since G is solvable by Lemma 3.2, there is a normal maximal subgroup M of G such that |G:M| = r for some prime r. By our assumption, M is an NSN-group. If M is a Dedekind group, then the unique possibility is that r-Sylow subgroups are not normal in G, which then the lemma follows. If M is not a Dedekind group, then M is a group described in (2) of Lemma 2.5. In this case, the possible non-normal Sylow subgroups are r-Sylow subgroups and one Sylow subgroup in M, from which the lemma follows. \Box

Lemma 3.4. Let G be a minimal non-NSN-group. Suppose that there exist exactly two distinct primes $p, q \in \pi(G)$ such that the Sylow p-subgroup and the Sylow q-subgroup of G are not normal in G. Then $|\pi(G)| > 2$.

Proof. Assume that $|\pi(G)| = 2$. Then there exists a normal maximal subgroup M of G such that |G:M| = r for some prime r. By hypothesis, M is an NSNgroup. If M is nilpotent, then G has a normal Sylow subgroup, a contradiction. Hence M is not nilpotent. Let Q be the non-normal Sylow subgroup of Mand set $M = P^* \rtimes Q$, where $P^* \in Syl_p(M)$. Surely, it follows that p = rsince otherwise, P^* is a normal Sylow subgroup of G. Hence G = PQ, where $P \in Syl_p(G)$. By Lemma 2.5(2), we know that p > q and that Q is cyclic. Moveover, the r-Syolw subgroup is normal by Lemma 2.1, a contradiction. Therefore, we get $|\pi(G)| > 2$.

Lemma 3.5. Let G be a minimal non-NSN-group. Suppose that there exist exactly two distinct primes $p, q \in \pi(G)$ such that the Sylow p-subgroup and the Sylow q-subgroup of G are not normal in G. Then $|\pi(G)| = 3$.

Proof. If $|\pi(G)| \neq 3$, then $|\pi(G)| \geq 4$ by Lemma 3.4. Since G is solvable, we may assume that $\{P_1, P_2, \ldots, P_k, \ldots, P_s\}$ is a Sylow system of G such that P_1, P_2 are not normal in G. Consider the subgroup $K = P_1P_2$. One has that K < G is an NSN-group and that K is a group described in (2) of Lemma 2.5.

Without loss of generality, assume that $P_2 \leq K$ and P_1 is cyclic. Let P_k be a Sylow subgroup not normalizing P_2 . Consider the subgroup $G_1 = P_1 P_2 P_k < G$. One has that G_1 is also an NSN-group, but $P_2 \leq P_1 P_2 \leq N_{G_1}(P_2)$. It follows that $N_{G_1}(P_2) = G_1$, a contradiction to the choice of P_k . This concludes the Lemma.

Lemma 3.6. Let G be a minimal non-NSN-group. Suppose there exists a unique prime $q \in \pi(G)$ such that the Sylow q-subgroup of G is not normal in G. Then G must be one of the following groups:

(1) $G = C_p \times (C_r \rtimes C_{q^n})$, where p, q, r are distinct primes and $Z(G) = C_p \times \Phi(C_{q^n})$.

(2) G = PQ, $P \leq G$, P is an elementary abelian p-group of rank > 1, Q is cyclic, and Q acts irreducibly on P.

(3) $G = Q_8 \rtimes C_{3^m}$ and $Z(G) = \Omega_1(Q_8) \Phi(C_{3^m})$.

In the following (4)-(7), p and q are distinct primes such that p > q.

(4) $G = \langle a, b, c \mid a^q = b^q = 1, c^p = 1, a^{-1}ca = c^r, [b, a] = [b, c] = 1, r \neq 1$ (mod p), $r^q \equiv 1 \pmod{p}$.

(5) $G = \langle a, b, c \mid a^{q^n} = b^q = 1, c^p = 1, a^{-1}ca = c^r, [b, a] = [b, c] = 1, r \neq 1$ (mod p), $r^q \equiv 1 \pmod{p}, n > 1 \rangle$.

(6) $G = \langle a, b \mid a^{q^n} = 1, b^p = 1, a^{-1}ba = b^r \rangle$, where n > 1 and the order of r modulo p is q^2 .

(7) $G = \langle a, b, c \mid a^p = b^p = 1, c^{q^n} = 1, c^{-1}ac = a^r, [b, a] = [b, c] = 1, r \neq 1$ (mod p), $r^q \equiv 1 \pmod{p}$.

Proof. Let $Q \in Syl_q(G)$ be a non-normal Sylow subgroup of G. Then $G = A \rtimes Q$ by hypothesis. Here, we have that A is nilpotent and all Sylow subgroups of G are Dedekind groups by our hypothesis. Our proof is divided into two cases:

Case 1. $|\pi(G)| \ge 3$.

If $PQ = P \rtimes Q$ for every Sylow *p*-subgroup *P* satisfying $p \neq q$, then we have $\Phi(Q) \leq Z(G)$ and every subgroup of P is normal in PQ by Lemma 2.5(2). Hence they are all normal in G as A is nilpotent. We first claim that there exists a Sylow subgroup P of G satisfying $N_P(Q) \neq 1$. In fact, there exists a proper subgroup H such that H is neither normal nor self-normalizing by hypothesis, that is, $H < N_G(H) < G$. Since all subgroups of Sylow p-subgroups are normal in G for every $p \neq q$, H itself is an NSN-group. By Frattini argument, we have $N_G(H) = N_{N_G(H)}(Q)H = N_{N_G(H)}(Q)N > NQ$, which implies that $N_{N_G(H)}(Q) > Q$ and our claim holds. Now, RQ is a proper subgroup of G and so RQ is an NSN-group. Hence $RQ = R \times Q$, that is, $G = P \times (B \rtimes Q)$ for some subgroup B of G. We now claim that P and B are groups of prime order. Suppose that P has a nontrivial subgroup P^* . Then $G_2 = P^* \times (B \rtimes Q)$ is an NSN-group and $Q \not \leq G_2$. But $P^*Q \leq N_{G_2}(Q)$, which implies that B normalizes Q, and so does G, a contradiction. This implies that P is a group of prime order. We claim that B is a group of prime power order. Otherwise, let R be any Sylow subgroup of B. Then $G_3 = P \times (RQ)$ is an NSN-group. Since Q is not normal in G, we may assume that $R \not\leq N_G(Q)$ without loss of generality. In this case, $Q \not\triangleq G_3$, but $PQ \leq N_{G_3}(Q)$, a contradiction. Hence R = Bis a Sylow subgroup of G and $G = P \times (R \rtimes Q)$. Assume that $\Omega_1(R) \neq R$. Then $P \times (\Omega_1(R)Q)$ is an NSN-group by hypothesis and so $\Omega_1(R) \leq C_G(Q)$ by Lemma 2.5. Now by applying Lemma 2.2 we have that $R \leq C_G(Q)$, a contradiction. This contradiction concludes that $R = \Omega_1(R)$ is an elementary abelian *r*-group. Moreover, every subgroups of R is normal in RQ as RQ is an NSN-group. Let $R = \langle v_1 \rangle \times \langle v_2 \rangle \times \cdots \times \langle v_n \rangle$. If n > 1, then $P \times (\langle v_i \rangle Q)$ is an NSN-group for each $i \in \{1, 2, \ldots, n\}$. It follows that $\langle v_i \rangle \leq C_G(Q)$ for each $i \in \{1, 2, \ldots, n\}$. Therefore, $R \leq C_G(Q)$, a contradiction. Thus n = 1 and so B = R is of prime order. Moreover, since RQ is a non-nilpotent NSN-group, we have that Q is cyclic by Lemma 2.5(2). Hence $G = C_p \times (C_r \rtimes C_{q^n})$, where p, q, r are distinct primes and $Z(G) = C_p \times \Phi(C_{q^n})$, that is, G is of type (1).

Case 2. $|\pi(G)| = 2$.

In this case, $G = P \rtimes Q$, where P is a Sylow p-subgroups of G. We have the following two claims.

Claim 1. If $N_P(Q) = 1$, then G is isomorphic to one of the groups of types (2) or (4)-(7).

Suppose that |P| = p. If Q has two maximal subgroups Q_1 and Q_2 , then Q_1P and Q_2P are NSN-groups. In this case, not both Q_1 and Q_2 can centralize P. By Lemma 2.5(2), we have p > q and $\Phi(Q_i) \leq Z(G)$, where i = 1, 2. If all maximal subgroups of Q are cyclic, then Q is isomorphic to the quaternion group Q_8 or an elementary abelian q-subgroup of order q^2 by the structure of Dedekind groups.

Assume that $Q = Q_8$. Then $G = P \rtimes Q_8$ and $Z(G) = \Omega_1(Q_8)$. However, $Q_8/Z(G) = Q_8/C_{Q_8}(P) \cong N_G(P)/C_G(P)$ is cyclic, which is impossible since $Q_8/\Omega_1(Q_8)$ is a Klein 4-group. Hence $Q \neq Q_8$.

Assume that Q is an elementary abelian q-subgroup of order q^2 . Then $G = P \rtimes Q$. Since $Q \cong Q/Z(G) = Q/C_Q(P) \cong N_G(P)/C_G(P) \leq \operatorname{Aut}(P)$ is cyclic, we have that |Z(G)| = q. Hence $G = P \rtimes Q = (P \rtimes \langle x \rangle) \times \langle y \rangle$, where $\langle x \rangle \times \langle y \rangle = Q$, that is, G is of type (4).

If Q has a non-cyclic maximal subgroup, then it is easy to see that there is a unique non-cyclic maximal subgroup Q^* in Q and $Q^*P = Q^* \times P$. Hence we may assume that $Q = Q_1 \times Q_2$, where Q_1 is a cyclic maximal subgroup of Q and Q_2 is of prime order. Obviously, we have that $Q_2 < Q^*$ and that Q_1P is a non-nilpotent NSN-group. By Lemma 2.5(2), we have p > q and $\Phi(Q_i) \leq Z(G)$. Then $G = C_q \times (P \rtimes C_{q^{n-1}})$ and $|Z(G)| = q^{n-1}$, that is, G is of type (5).

If Q is cyclic, then there exists a proper subgroup X < Q such that X is neither normal in G nor self-normalizing since G is not an NSN-group. By hypothesis, PX is an NSN-group. Obviously, X is the maximal subgroup of Q (otherwise, X would be normal in G) and p > q. Moreover, since $\Phi(X) \le$ Z(PX) by Lemma 2.5(2), we have $\Phi(X) \le Z(G)$. Let $|Q| = q^n$. Then n > 1and $|Z(G)| = q^{n-2}$. Now we can conclude that G is of type (6) from the lemma. Suppose that |P| > p. We assert that $\Omega_1(P) = P$. Otherwise, assume that $\Omega_1(P) < P$. Then $\Omega_1(P)Q < G$ and hence $\Omega_1(P)Q$ is an NSN-group. By Lemma 2.5(2), we have p > q and every subgroup of $\Omega_1(P)$ is normalized by Q, Q is cyclic and $\Phi(Q) \leq C_G(\Omega_1(P))$. It follows by Lemma 2.2 that $\Phi(Q) \leq Z(G)$. Thus G is an NSN-group, a contradiction. Hence $\Omega_1(P) = P$. Therefore, P is an elementary abelian group.

Let $P = \langle v_1 \rangle \times \langle v_2 \rangle \times \cdots \times \langle v_n \rangle$, n > 1. Suppose that Q acts reducibly on P. Then by Lemma 2.3, there exist two Q-invariant proper subgroups A and B of P such that $P = A \times B$. Now, both AQ and BQ are proper subgroups of G and Q centralizes neither A nor B since $N_P(Q) = 1$. By Lemma 2.5(2), we have that every subgroup of A and of B is Q-invariant, that is, each $\langle v_i \rangle \trianglelefteq G$. So $Q\langle v_i \rangle$ is an NSN-group. One has that Q is cyclic and $\Phi(Q) \le C_G(v_i)$ for every i satisfying $v_i \notin C_G(Q)$

An element a is said to act on V by scalars if there exists an integer m such that $a^{-1}va = v^m$ for all v in V. We claim that not every element Q acts by scalars on P. Assume that Q acts by scalars on P. Then every subgroup of P is normal in G and hence $\Phi(Q) = Z(G)$. Hence G is an NSN- group, a contradiction. Thus our claim holds. Let a be an element of Q not acting by scalars on P. Then we may choose v_1 and v_2 so that $a^{-1}v_1a = v_1^{m_1}$ and $a^{-1}v_2a = v_2^{m_2}$, where $m_1 \neq m_2 \pmod{p}$. Thus $\langle v_1 v_2 \rangle$ is not a normal subgroup of $\langle a \rangle \langle v_1, v_2 \rangle$. Hence $\langle a \rangle \langle v_1, v_2 \rangle$ is not an NSN-group, so $G = \langle a \rangle \langle v_1, v_2 \rangle$, $Q = \langle a \rangle$ is cyclic and $P = \langle v_1, v_2 \rangle$ is of order p^2 . That is, G is of type (7).

Suppose that Q acts irreducibly on P. We claim that Q is cyclic. Indeed, if Q has two maximal subgroups Q_1 and Q_2 , then PQ_1 and PQ_2 are distinct NSN-groups. By Lemma 2.5, every subgroup of P is normalized by both Q_1 and Q_2 and hence normalized by Q, a contradiction to the action being irreducible. Thus Q has a unique maximal subgroup, i.e., Q is cyclic. It follows that G is a minimal non-NSN-group of type (2).

Claim 2. If $N_P(Q) > 1$, then G is isomorphic to one of the groups of types (3) or (7).

Let

$$\Omega(P) = \begin{cases} \Omega_1(P) & p > 2, \\ \Omega_2(P) & p = 2. \end{cases}$$

We assert that $\Omega(P) = P$. Otherwise, if $\Omega(P) \neq P$, then p'-group Q acts nontrivially on p-group $\Omega(P)$ by Lemma 2.2. Hence $\Omega(P)Q$ is an NSN-group by hypothesis and so we have p > q by Lemma 2.5(2). Since $N_P(Q) > 1$, we have that $N_{\Omega_1(P)Q}(Q) = \Omega_1(P)Q$, so $\Omega_1(P)Q = \Omega_1(P) \times Q$, Q acts trivially on $\Omega(P)$, a contradiction. Thus $\Omega(P) = P$.

Now we claim that $C_P(Q) = N_P(Q) > 1$. In fact, let $N = N_P(Q) = P \cap N_G(Q) \leq N_G(Q)$. Then $Q \leq N_G(N)$ and so $NQ = N \times Q$, which implies that $N \leq C_P(Q)$. Hence $C_P(Q) = N = N_P(Q)$. If $\Omega_1(P) \leq P$, then $\Omega_1(P)Q$ is an NSN-group and so $\Omega_1(P) \leq C_P(Q)$ by the structure of NSN-groups.

Suppose that $P = Q_8 \times E$, where E is a nontrivial elementary abelian 2-subgroup. If $Q_8 \leq C_P(Q)$, then $P \leq C_P(Q)$ since $\Omega_1(P) \leq C_P(Q)$, a

586

contradiction. Hence $Q_8 \leq C_P(Q)$. Moreover, let Q^* be a maximal subgroup of Q. Then PQ^* is an NSN-groups. By Lemma 2.5, we have $Q^* \leq C_G(P)$, which implies that Q has a unique maximal subgroup, that is, Q is cyclic. We now prove that G is a minimal non-nilpotent group. Let H be a nontrivial subgroup of G. If H does not contain any Sylow q-subgroup of G, then His obviously nilpotent since $\Omega_1(P) \times \Phi(Q) \leq Z(G)$. So we may assume that $Q \leq H$ without loss of generality. If is not nilpotent, then we have by Lemma 2.5 that $H = Q \rtimes D$ is an NSN-group, where D is a cyclic subgroup with order 4. Consider the group $F = (Q \rtimes D) \times E$. Obviously, F is a proper subgroup of G and so is an NSN-group. But on the other hand, D is neither normal in G nor self-normalizing, a contradiction. Thus H is nilpotent and so G is a minimal non-nilpotent group. By the structure of minimal non-nilpotent groups, we know that G is a minimal non-Dedekind-group, a contradiction.

If $P = Q_8$, then $G = Q_8 \rtimes Q$. Since $\operatorname{Aut}(Q_8) = S_4$, we have that Q is a 3group. Now we claim that Q is cyclic. Otherwise, let Q_1 and Q_2 be two distinct maximal subgroups of Q. Then Q_8Q_i , i = 1, 2, are NSN-groups by hypothesis and hence $Q_8Q_i = Q_8 \times Q_i$ for $\Omega_1(Q_8) \leq C_G(Q_i)$, i = 1, 2. It follows that Q is normal in G, a contradiction. Thus $G = Q_8 \rtimes C_{3^m}$ and $Z(G) = \Omega_1(Q_8) \Phi(C_{3^m})$. That is, G is of type (3).

If $\Omega_1(P) = P$, then P is an elementary abelian p-subgroup. In this case, $C_P(Q)$ is a Q-invariant direct factor of P. Applying Lemma 2.3, we get that there exist two Q-invariant proper subgroups A and B of P such that $P = A \times B$. Now, both AQ and BQ are proper subgroups of G. Since Q is not normal in G, not both A and B can centralize Q. Without loss of generality, suppose that $A \nleq C_P(Q)$. Notice that $C_P(Q) = N_P(Q) > 1$. One has $AQ \lneq G$ and so AQ is a non-nilpotent NSN-group. By Lemma 2.5(2), p > q and every subgroup of A is Q-invariant, Q is cyclic and $\Phi(Q)$ centralizes A. Let X be a minimal subgroup of A of order p such that $X \nleq C_P(Q)$ and Y be any minimal subgroup of $C_P(Q)$. Then $Y \times (X \rtimes Q)$ is not an NSN-group since $X < N_G(X) = X \times Y \times \Phi(Q) \lneq G$. Thus we get $G = Y \times (X \rtimes Q)$, $P = X \times Y$ is an elementary abelian p-subgroup of order p^2 , and Q is cyclic. Suppose that $|Q| = q^n$. Then we have obviously that $|Z(G)| = pq^{n-1}$. It follows that G is of type (7). Thus the proof is completed.

Lemma 3.7. Let G be a minimal non-NSN-group. Suppose there exists exactly two distinct primes $p, q \in \pi(G)$ such that the Sylow p-subgroups and the Sylow q-subgroups of G are not normal in G. Then G is isomorphic to $G = C_r \rtimes (C_p \times C_q)$, where p, q and r are distinct primes, r > q > p and Z(G) = 1.

Proof. By Lemma 3.5, we may assume that G = PQR, where $P \in Syl_p(G), Q \in Syl_q(G)$ and $R \in Syl_r(G)$, P and Q are not normal in G and $R \leq G$. Then by Lemma 2.5 and assumption, both P and Q are cyclic.

(1) Suppose that $PQ = P \times Q$. Then both PR and QR are non-nilpotent NSN-groups and $N_R(P) = N_R(Q) = 1$. By Lemma 2.5(2), we may choose a maximal subgroup R^* of R. The subgroup $K = R^* \rtimes (P \times Q)$ is an NSN-group

by hypothesis and $P \not \trianglelefteq K$ since $N_R(P) = 1$. However, $N_K(P) \ge PQ > P$, a contradiction. Thus R is cyclic of prime order and $G = C_r \rtimes (P \times Q)$. Since $\Phi(P) \le Z(G)$, we know that $L = C_r \rtimes (\Phi(P) \times Q) = \Phi(P) \times (C_r \rtimes Q)$ is an NSN-group. In this case, $Q \not \trianglelefteq L$, but $N_L(Q) \ge Q\Phi(P)$. Hence $\Phi(P) = 1$ and P is cyclic of prime order. By the same argument, we have that Q is also of prime order. Thus $G = C_r \rtimes (C_p \times C_q)$, where p, q and r are distinct primes, p, q < r and Z(G) = 1.

(2) Suppose that $PQ = P \rtimes Q$. Then $PR = R \rtimes P$ and $N_R(P) = 1$. Choose a maximal subgroup R^* of R and let $T = R^* \rtimes (P \rtimes Q)$. Then T is an NSNgroup by hypothesis and $P \not \cong T$ if $R^* \neq 1$. However, $N_T(Q) \ge PQ > Q$, hence $R^* = 1$ and R is cyclic of prime order. We have the following two cases:

(i) Suppose $RQ = R \rtimes Q$. Let Q^* be the maximal subgroup of Q. Then $U = C_r \rtimes (P \rtimes Q^*)$ is an NSN-group and $P \not \trianglelefteq U$. On the other hand, $N_U(P) \ge PQ^* > P$, a contradiction. Hence $Q^* = 1$ and Q is of prime order and so $G = C_r \rtimes (C_{p^m} \rtimes C_q)$. Let $V = C_{p^m} \rtimes C_q$. Then $V/C_V(C_r) \le Aut(C_r)$ is a cyclic group, which forces that $C_{p^m} \le C_V(C_r)$. Then $C_{p^m} \le G$, a contradiction. (ii) Suppose $RQ = R \times Q$. Let P^* be the maximal subgroup of P. Then

(ii) Suppose $RQ = R \times Q$. Let P^* be the maximal subgroup of P. Then $W = C_r \rtimes (P^* \rtimes Q)$ is an NSN-group and $Q \not \trianglelefteq W$. On the other hand, $N_W(Q) \ge C_r Q > Q$, a contradiction. Hence $P^* = 1$ and P is of prime order. Hence $G = C_r \rtimes (C_p \rtimes C_{q^n})$. By the same argument as that in the above paragraph, we come to a contradiction. Thus the proof is completed. \Box

Proof of Main Theorem. It follows from Lemma 3.1, Lemma 3.2, Lemma 3.6 and Lemma 3.7. \Box

Acknowledgement. The authors would like to acknowledge the referee with deep gratitude for his(her) suggestions revising the paper.

References

- R. Brandl, Groups with few non-normal subgroups, Comm. Algebra 23 (1995), no. 6, 2091–2098.
- [2] J. Buckley, J. C. Lennox, and J. Wieglod, Generalizations of Hamiltonian groups, Ricerche Mat. 41 (1992), no. 2, 369–376.
- S. Chen, Classification of finite groups whose maximal subgroups are Dedekind groups, J. Zhejiang Univ. Sci. Ed. 29 (2002), no. 2, 121–124.
- [4] K. Doerk, Minimal nicht überauflösbare endliche Gruppen, Math. Z. 91 (1966), 198–205.
- [5] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, An Introduction, New York: Springer-Verlag, 2004.
- [6] T. J. Laffey, A lemma on finite p-group and some consequences, Proc. Cambr. Phil. Soc. 75 (1974), 133–137.
- [7] G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), no. 4, 398–404.
- [8] Gh. Pic, On the structure of quasi-Hamiltonian groups, Acad. Repub. Pop. Române Bul. Sti. A. 1 (1949), 973–979.
- [9] D. J. S. Robinson, A Course in the Theory of Groups, New York, Springer, 1993.
- [10] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437.

- [11] G. L. Walls, Groups with maximal subgroups of Sylow subgroups normal, Israel J. Math. 43 (1982), no. 2, 166–168.
- [12] Q. Zhang, Groups with only normal and self-normalzing subgroups, J. Shanxi Normal University (Science Edition) 3 (1989), no. 2, 11–13(in Chinese).

ZHANGJIA HAN SCHOOL OF MATHEMATICS CHENGDU UNIVERSITY OF INFORMATION TECHNOLOGY CHENGDU, SICHUAN 610225, P. R. CHINA *E-mail address*: hzjmm11@yahoo.com.cn

GUIYUN CHEN SCHOOL OF MATHEMATICS AND STATISTICS SOUTHWEST UNIVERSITY BEIBEI, CHONGQING 400715, P. R. CHINA *E-mail address:* gychen1963@163.com

HUAGUO SHI SICHUAN VOCATIONAL AND TECHNICAL COLLEGE SICHUAN 629000, P. R. CHINA *E-mail address:* shihuaguo@126.com