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ON MINIMAL NON-NSN-GROUPS

Zhangjia Han, Guiyun Chen, and Huaguo Shi

Abstract. A finite group G is called an NSN-group if every proper sub-
group of G is either normal in G or self-normalizing. In this paper, the
non-NSN-groups whose proper subgroups are all NSN-groups are deter-
mined.

1. Introduction

The structure of the group whose subgroups are all normal (called a Dedekind
group or a Hamiltonian group) has been completely classified by R. Dedekind,
E. Wendt and R. Bare (see [9, Theorem 5.3.7]). Since then, many authors have
dealt with generalizations of such kind of groups. We mention some of them
here. Pic [8] considered finite groups in which every subgroup S is quasinor-
mal, that is, S satisfies SH = HS for all subgroups H of G, and Walls [11]
studied groups with maximal subgroups of Sylow subgroups that are normal
in G. Buckley et al. [2] dealt with groups in which all subgroups form at most
two conjugate classes and Brandl [1] classified groups all of whose non-normal
subgroups are conjugates.

If N is a normal subgroup of G, then N is normalized by all elements of G.
For a normal subgroup, the number of elements of G normalizing N is up to
maximum. On the other hand, if NG(N) = N for a proper subgroup N of G,
then the number of elements of G normalizing N is up to minimum. Thus in
some sense, the propertiesNEG andNG(N) = N can be viewed as two extreme
cases in considering the number of elements normalizing N in G. Let X be
a property of a group. A group G is called an X -critical group or a minimal
non-X -group if G is not an X -group but every proper subgroup of G is an
X -group. There are many remarkable examples of minimal non-X -groups:
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minimal non-abelian groups (Miller and Moreno, [7]), minimal non-nilpotent
groups (Schmidt), minimal non-supersoluble groups ([4]) and minimal non-p-
nilpotent groups (Itô).

A group G whose every subgroup N has extreme numbers of elements nor-
malizing N , that is, either NG(N) = G or NG(N) = N , is called an NSN-group.
The structure of NSN-groups has been investigated in [12]. In this paper, by
applying the properties of an NSN-group, we classify all the minimal non-NSN-
groups.

We first introduce the following definitions.

Definition 1.1. Let G be a finite group. Then G is called an NSN-group if
every subgroup N of G is either normal in G or self-normalizing, that is, either
NG(N) = G or NG(N) = N .

Definition 1.2. A group G is called a minimal non-NSN-group if every proper
subgroup of G is an NSN-group but G itself is not an NSN-group.

Our main results are as follows:

Main Theorem. Suppose that G is a finite minimal non-NSN-group. Then

G is solvable and G is isomorphic to one of the following groups:
(1) G = 〈x, y1, y2, . . . , yb | xpa

= yq1 = yq2 = · · · = yqb , yiyj = yjyi, i, j =

1, 2, . . . , b, yxi = yi+1, i = 1, 2, . . . , b − 1, yxb = yd1

1 yd2

2 · · · ydb

b 〉, where f(z) =

zb − dbz
b−1 − · · · − d2z − d1 is irreducible in Fq and f(z)|zp

a

− 1.

(2) G = 〈a, b, c | ap
m

= bp
n

= cp = 1, ba = abc, ca = ac, cb = bc〉, where m
and n are natural numbers.

(3) G = 〈a, b | ap
m

= bp
n

= 1, ba = a1+pm−1

b〉, where m and n are natural

numbers and m ≥ 2.
(4) G = 〈a, b, c | a3m = b4 = c4 = 1, b2 = c2, cb = b−1c, a−1ba = c,

a−1ca = cb〉, where m and n are natural numbers.

(5) G = 〈a, b | a8 = 1, b2 = a4, b−1ba = a−1〉.
(6) G = PQ, P EG, P is an elementary abelian p-group of rank > 1, Q is

cyclic, and Q acts irreducibly on P .

(7) G = Q8 ⋊ C3m and Z(G) = Ω1(Q8)Φ(C3m).
In the following (8)-(11), p and q are distinct primes and p > q.
(8) G = 〈a, b, c | aq = bq = 1, cp = 1, a−1ca = cr, [b, a] = [b, c] = 1, r 6≡ 1

(mod p), rq ≡ 1 (mod p)〉.
(9) G = 〈a, b, c | aq

n

= bq = 1, cp = 1, a−1ca = cr, [b, a] = [b, c] = 1, r 6≡ 1
(mod p), rq ≡ 1 (mod p), n > 1〉.

(10) G = 〈a, b | aq
n

= 1, bp = 1, a−1ba = br〉, where n > 1 and the order of

r modulo p is q2.
(11) G = 〈a, b, c | ap = bp = 1, cq

n

= 1, c−1ac = ar, [b, a] = [b, c] = 1,
r 6≡ 1 (mod p), rq ≡ 1 (mod p)〉.

(12) G = Cp × (Cr ⋊Cqn), where p, q and r are distinct primes. Moreover,

Z(G) = Cp × Φ(Cqm ).
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(13) G = Cr ⋊ (Cp × Cq), where p, q and r are distinct primes, r > q > p,
and Z(G) = 1.

Throughout this paper, only finite groups are considered and all our nota-
tions are standard. For example, we denote by A ⋊ P the semidirect product
of A and P ; Cn denotes a cyclic group of order n and π(G) denotes the set of
all prime divisors of |G|. All unexplained notations can be found in [5] and [9].

2. Some preliminaries

In this section, we collect some lemmas which will be frequently used in the
sequel.

Lemma 2.1 ([5, 7.2.2]). Suppose that the Sylow p-subgroups of G are cyclic,

where p is the smallest prime divisor of |G|. Then G has a normal p-comple-

ment.

Lemma 2.2 ([6]). Suppose that p′-group H acts on a p-group G. Let

Ω(G) =

{

Ω1(G) p > 2,
Ω2(G) p = 2.

If H acts trivially on Ω(G), then H acts trivially on G as well.

Lemma 2.3 (Maschke’s Theorem, [5, 8.4.6]). Suppose that the action of A
on an elementary abelian group G is coprime and H is an A-invariant direct
factor of G. Then H has an A-invariant complement in G.

Lemma 2.4 ([10]). If G is a minimal nonabelian simple group, i.e. a non-

abelian simple group all of whose proper subgroups are solvable, then G is iso-

morphic to one of the following simple groups:
(1) PSL(2, p), where p is a prime with p > 3 and 5 ∤ p2 − 1.
(2) PSL(2, 2q), where q is a prime.

(3) PSL(2, 3q), where q is a prime.

(4) PSL(3, 3).
(5) The Suzuki group Sz(2q), where q is an odd prime.

In proving our main theorem, the following result will be frequently used.

Lemma 2.5 ([12, Main Theorem]). Let G be a finite group. Then all subgroups

of G are either normal or self-normalizing if and only if either

(1) G is a Dedekind group, or

(2) G = H ⋊ P , where H is an abelian normal Hall p′-subgroup and P =
〈x〉 ∈ Sylp(G), 〈xp〉 = Op(G) = Z(G), where p is the minimal prime dividing

the order of G. Furthermore, x induces a fixed-point-free power automorphism

of order p on H.
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3. Proof of Main Theorem

We first note that the classification of minimal non-Dedekind groups was
given in [3] and [7]. We list them in the following lemma.

Lemma 3.1. Let G be a minimal non-Dedekind group. Then G is solvable and

G is isomorphic to one of the following groups:
(1) G = 〈x, y1, y2, . . . , yb | xpa

= yq1 = yq2 = · · · = yqb , yiyj = yjyi, i, j =

1, 2, . . . , b, yxi = yi+1, i = 1, 2, . . . , b − 1, yxb = yd1

1 yd2

2 · · · ydb

b 〉, where f(z) =

zb − dbz
b−1 − · · · − d2z − d1 is irreducible in Fq and f(z) | zp

a

− 1.

(2) G = 〈a, b, c | ap
m

= bp
n

= cp = 1, ba = abc, ca = ac, cb = bc〉, where m
and n are natural numbers.

(3) G = 〈a, b | ap
m

= bp
n

= 1, ba = a1+pm−1

b〉, where m and n are natural

numbers and m ≥ 2.
(4) G = 〈a, b, c | a3m = b4 = c4 = 1, b2 = c2, cb = b−1c, a−1ba = c, a−1ca =

cb〉, where m and n are natural numbers (minimal non-3-closed groups).
(5) G = 〈a, b | a8 = 1, b2 = a4, b−1ba = a−1〉.

By Lemma 3.1, it is enough to discuss minimal non-NSN-groups which are
not minimal non-Dedekind groups. By Lemma 2.5, in what follows, every
Sylow subgroup of G is a Dedekind 2-group or an abelian group of odd order.
We will use this fact frequently in our following proof.

Lemma 3.2. Let G be a minimal non-NSN-group. Then G is solvable.

Proof. Suppose that G is not solvable. By Lemma 2.5, every proper subgroup
of G is solvable and hence G/Φ(G) is a minimal simple group, where Φ(G) is
the Frattini subgroup of G. Let H be the 2-complement of Φ(G). Then H EG
and H is abelian since H is an NSN-group of odd order. We have following
claims.

(1) H = 1.
Consider H 6= 1. Let P ∈ Sylp(H), where p is any prime in π(H). Then

P E G. Let S2 ∈ Syl2(G) and K = S2P . Then K is a proper subgroup of G,
and hence K is an NSN-group by hypothesis. If K is an NSN-group as in (2) of
Lemma 2.5, then S2 is cyclic, which concludes thatG has normal 2-complement,
a contradiction. Hence we may assume that K is nilpotent. But it follows in
this case that S2 ≤ CG(P )EG. Using the simplicity of G/Φ(G), we conclude
that S2 ≤ CG(P )Φ(G), which concludes that G is solvable, a contradiction.

(2) Every subgroup of order 2mp (p an odd prime) of G = G/Φ(G) is 2-
nilpotent.

Assume that G possesses a subgroup L containing S0 = Φ(G) such that
L/S0 is not a 2-nilpotent group of order 2mp. Then L contains a minimal
non-2-nilpotent subgroup D with order 2np for some natural number n. Hence
D = S∗P is a minimal non-nilpotent group with a normal Sylow 2-subgroup
S∗ and |P | = p. Since given that G is non-solvable, D is a proper subgroup of
G, D is an NSN-group by the hypothesis. Hence D is nilpotent by Lemma 2.5,
a contradiction.
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(3) Conclusion.
Now, we assert that there is no simple group listed in Lemma 2.4 isomorphic

to G. Then we get that G is solvable. In fact, if G is isomorphic to one of
PSL(2, p), PSL(2, 3q) or PSL(3, 3), then G has a subgroup isomorphic to A4,
the alternating group of degree 4, a contradiction to (2). If G ∼= PSL(2, 2q)
or Sz(2q), then G is a Zassenhaus group of odd degree and the stabilizer of
a point is a Frobenius group with kernel a 2-group, again a contradiction to
(2). Hence G cannot be any one of PSL(2, 2q) nor Sz(2q). Thus the proof is
completed. �

By Lemma 3.2, we always assume in the following that G is a solvable
minimal non-NSN-group.

Lemma 3.3. Let G be a minimal non-NSN-group. Then there exist at most

two distinct primes p, q ∈ π(G) such that the Sylow p-subgroup and the Sylow

q-subgroup of G are not normal in G.

Proof. Since G is solvable by Lemma 3.2, there is a normal maximal subgroup
M of G such that |G : M | = r for some prime r. By our assumption, M is
an NSN-group. If M is a Dedekind group, then the unique possibility is that
r-Sylow subgroups are not normal in G, which then the lemma follows. If M
is not a Dedekind group, then M is a group described in (2) of Lemma 2.5. In
this case, the possible non-normal Sylow subgroups are r-Sylow subgroups and
one Sylow subgroup in M , from which the lemma follows. �

Lemma 3.4. Let G be a minimal non-NSN-group. Suppose that there exist

exactly two distinct primes p, q ∈ π(G) such that the Sylow p-subgroup and the

Sylow q-subgroup of G are not normal in G. Then |π(G)| > 2.

Proof. Assume that |π(G)| = 2. Then there exists a normal maximal subgroup
M of G such that |G : M | = r for some prime r. By hypothesis, M is an NSN-
group. If M is nilpotent, then G has a normal Sylow subgroup, a contradiction.
Hence M is not nilpotent. Let Q be the non-normal Sylow subgroup of M
and set M = P ∗ ⋊ Q, where P ∗ ∈ Sylp(M). Surely, it follows that p = r
since otherwise, P ∗ is a normal Sylow subgroup of G. Hence G = PQ, where
P ∈ Sylp(G). By Lemma 2.5(2), we know that p > q and that Q is cyclic.
Moveover, the r-Syolw subgroup is normal by Lemma 2.1, a contradiction.
Therefore, we get |π(G)| > 2. �

Lemma 3.5. Let G be a minimal non-NSN-group. Suppose that there exist

exactly two distinct primes p, q ∈ π(G) such that the Sylow p-subgroup and the

Sylow q-subgroup of G are not normal in G. Then |π(G)| = 3.

Proof. If |π(G)| 6= 3, then |π(G)| ≥ 4 by Lemma 3.4. Since G is solvable,
we may assume that {P1, P2, . . . , Pk, . . . , Ps} is a Sylow system of G such that
P1, P2 are not normal in G. Consider the subgroup K = P1P2. One has that
K < G is an NSN-group and that K is a group described in (2) of Lemma 2.5.
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Without loss of generality, assume that P2 EK and P1 is cyclic. Let Pk be a
Sylow subgroup not normalizing P2. Consider the subgroupG1 = P1P2Pk < G.
One has that G1 is also an NSN-group, but P2 E P1P2 ≤ NG1

(P2). It follows
that NG1

(P2) = G1, a contradiction to the choice of Pk. This concludes the
Lemma. �

Lemma 3.6. Let G be a minimal non-NSN-group. Suppose there exists a

unique prime q ∈ π(G) such that the Sylow q-subgroup of G is not normal in

G. Then G must be one of the following groups:
(1) G = Cp × (Cr ⋊ Cqn), where p, q, r are distinct primes and Z(G) =

Cp × Φ(Cqn).
(2) G = PQ, P EG, P is an elementary abelian p-group of rank > 1, Q is

cyclic, and Q acts irreducibly on P .

(3) G = Q8 ⋊ C3m and Z(G) = Ω1(Q8)Φ(C3m).
In the following (4)-(7), p and q are distinct primes such that p > q.
(4) G = 〈a, b, c | aq = bq = 1, cp = 1, a−1ca = cr, [b, a] = [b, c] = 1, r 6≡ 1

(mod p), rq ≡ 1 (mod p)〉.
(5) G = 〈a, b, c | aq

n

= bq = 1, cp = 1, a−1ca = cr, [b, a] = [b, c] = 1, r 6≡ 1
(mod p), rq ≡ 1 (mod p), n > 1〉.

(6) G = 〈a, b | aq
n

= 1, bp = 1, a−1ba = br〉, where n > 1 and the order of

r modulo p is q2.
(7) G = 〈a, b, c | ap = bp = 1, cq

n

= 1, c−1ac = ar, [b, a] = [b, c] = 1, r 6≡ 1
(mod p), rq ≡ 1 (mod p)〉.

Proof. Let Q ∈ Sylq(G) be a non-normal Sylow subgroup of G. Then G =
A⋊Q by hypothesis. Here, we have that A is nilpotent and all Sylow subgroups
of G are Dedekind groups by our hypothesis. Our proof is divided into two
cases:

Case 1. |π(G)| ≥ 3.
If PQ = P ⋊Q for every Sylow p-subgroup P satisfying p 6= q, then we have

Φ(Q) ≤ Z(G) and every subgroup of P is normal in PQ by Lemma 2.5(2).
Hence they are all normal in G as A is nilpotent. We first claim that there exists
a Sylow subgroup P of G satisfying NP (Q) 6= 1. In fact, there exists a proper
subgroup H such that H is neither normal nor self-normalizing by hypothesis,
that is, H < NG(H) < G. Since all subgroups of Sylow p-subgroups are
normal in G for every p 6= q, H itself is an NSN-group. By Frattini argument,
we have NG(H) = NNG(H)(Q)H = NNG(H)(Q)N > NQ, which implies that
NNG(H)(Q) > Q and our claim holds. Now, RQ is a proper subgroup of G and
so RQ is an NSN-group. Hence RQ = R × Q, that is, G = P × (B ⋊ Q) for
some subgroup B of G. We now claim that P and B are groups of prime order.
Suppose that P has a nontrivial subgroup P ∗. Then G2 = P ∗ × (B ⋊Q) is an
NSN-group and Q 5 G2. But P

∗Q ≤ NG2
(Q), which implies that B normalizes

Q, and so does G, a contradiction. This implies that P is a group of prime
order. We claim that B is a group of prime power order. Otherwise, let R be
any Sylow subgroup of B. Then G3 = P × (RQ) is an NSN-group. Since Q is
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not normal in G, we may assume that R � NG(Q) without loss of generality.
In this case, Q 5 G3, but PQ ≤ NG3

(Q), a contradiction. Hence R = B
is a Sylow subgroup of G and G = P × (R ⋊ Q). Assume that Ω1(R) 6= R.
Then P × (Ω1(R)Q) is an NSN-group by hypothesis and so Ω1(R) ≤ CG(Q)
by Lemma 2.5. Now by applying Lemma 2.2 we have that R ≤ CG(Q), a
contradiction. This contradiction concludes that R = Ω1(R) is an elementary
abelian r-group. Moreover, every subgroups of R is normal in RQ as RQ is an
NSN-group. Let R = 〈v1〉 × 〈v2〉 × · · · × 〈vn〉. If n > 1, then P × (〈vi〉Q) is
an NSN-group for each i ∈ {1, 2, . . . , n}. It follows that 〈vi〉 ≤ CG(Q) for each
i ∈ {1, 2, . . . , n}. Therefore, R ≤ CG(Q), a contradiction. Thus n = 1 and so
B = R is of prime order. Moreover, since RQ is a non-nilpotent NSN-group,
we have that Q is cyclic by Lemma 2.5(2). Hence G = Cp × (Cr ⋊Cqn), where
p, q, r are distinct primes and Z(G) = Cp × Φ(Cqn), that is, G is of type (1).

Case 2. |π(G)| = 2.
In this case, G = P ⋊Q, where P is a Sylow p-subgroups of G. We have the

following two claims.
Claim 1. If NP (Q) = 1, then G is isomorphic to one of the groups of types

(2) or (4)-(7).
Suppose that |P | = p. If Q has two maximal subgroups Q1 and Q2, then

Q1P and Q2P are NSN-groups. In this case, not both Q1 and Q2 can centralize
P . By Lemma 2.5(2), we have p > q and Φ(Qi) ≤ Z(G), where i = 1, 2. If
all maximal subgroups of Q are cyclic, then Q is isomorphic to the quaternion
group Q8 or an elementary abelian q-subgroup of order q2 by the structure of
Dedekind groups.

Assume that Q = Q8. Then G = P ⋊ Q8 and Z(G) = Ω1(Q8). However,
Q8/Z(G) = Q8/CQ8

(P ) ∼= NG(P )/CG(P ) is cyclic, which is impossible since
Q8/Ω1(Q8) is a Klein 4-group. Hence Q 6= Q8.

Assume that Q is an elementary abelian q-subgroup of order q2. Then
G = P ⋊ Q. Since Q ∼= Q/Z(G) = Q/CQ(P ) ∼= NG(P )/CG(P ) ≤ Aut(P ) is
cyclic, we have that |Z(G)| = q. Hence G = P ⋊ Q = (P ⋊ 〈x〉) × 〈y〉, where
〈x〉 × 〈y〉 = Q, that is, G is of type (4).

If Q has a non-cyclic maximal subgroup, then it is easy to see that there is
a unique non-cyclic maximal subgroup Q∗ in Q and Q∗P = Q∗ × P . Hence
we may assume that Q = Q1 × Q2, where Q1 is a cyclic maximal subgroup
of Q and Q2 is of prime order. Obviously, we have that Q2 < Q∗ and that
Q1P is a non-nilpotent NSN-group. By Lemma 2.5(2), we have p > q and
Φ(Qi) ≤ Z(G). Then G = Cq × (P ⋊ Cqn−1) and |Z(G)| = qn−1, that is, G is
of type (5).

If Q is cyclic, then there exists a proper subgroup X < Q such that X is
neither normal in G nor self-normalizing since G is not an NSN-group. By
hypothesis, PX is an NSN-group. Obviously, X is the maximal subgroup of
Q (otherwise, X would be normal in G) and p > q. Moreover, since Φ(X) ≤
Z(PX) by Lemma 2.5(2), we have Φ(X) ≤ Z(G). Let |Q| = qn. Then n > 1
and |Z(G)| = qn−2. Now we can conclude that G is of type (6) from the lemma.
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Suppose that |P | > p. We assert that Ω1(P ) = P . Otherwise, assume
that Ω1(P ) < P . Then Ω1(P )Q < G and hence Ω1(P )Q is an NSN-group.
By Lemma 2.5(2), we have p > q and every subgroup of Ω1(P ) is normalized
by Q, Q is cyclic and Φ(Q) ≤ CG(Ω1(P )). It follows by Lemma 2.2 that
Φ(Q) ≤ Z(G). Thus G is an NSN-group, a contradiction. Hence Ω1(P ) = P .
Therefore, P is an elementary abelian group.

Let P = 〈v1〉 × 〈v2〉 × · · · × 〈vn〉, n > 1. Suppose that Q acts reducibly on
P . Then by Lemma 2.3, there exist two Q-invariant proper subgroups A and
B of P such that P = A×B. Now, both AQ and BQ are proper subgroups of
G and Q centralizes neither A nor B since NP (Q) = 1. By Lemma 2.5(2), we
have that every subgroup of A and of B is Q-invariant, that is, each 〈vi〉EG.
So Q〈vi〉 is an NSN-group. One has that Q is cyclic and Φ(Q) ≤ CG(vi) for
every i satisfying vi 6∈ CG(Q)

An element a is said to act on V by scalars if there exists an integer m
such that a−1va = vm for all v in V . We claim that not every element Q acts
by scalars on P . Assume that Q acts by scalars on P . Then every subgroup
of P is normal in G and hence Φ(Q) = Z(G). Hence G is an NSN- group,
a contradiction. Thus our claim holds. Let a be an element of Q not acting
by scalars on P . Then we may choose v1 and v2 so that a−1v1a = vm1

1 and
a−1v2a = vm2

2 , where m1 6≡ m2 (mod p). Thus 〈v1v2〉 is not a normal subgroup
of 〈a〉〈v1, v2〉. Hence 〈a〉〈v1, v2〉 is not an NSN-group, so G = 〈a〉〈v1, v2〉, Q =
〈a〉 is cyclic and P = 〈v1, v2〉 is of order p

2. That is, G is of type (7).
Suppose that Q acts irreducibly on P . We claim that Q is cyclic. Indeed,

if Q has two maximal subgroups Q1 and Q2, then PQ1 and PQ2 are distinct
NSN-groups. By Lemma 2.5, every subgroup of P is normalized by both Q1 and
Q2 and hence normalized by Q, a contradiction to the action being irreducible.
Thus Q has a unique maximal subgroup, i.e., Q is cyclic. It follows that G is
a minimal non-NSN-group of type (2).

Claim 2. If NP (Q) > 1, then G is isomorphic to one of the groups of types
(3) or (7).

Let

Ω(P ) =

{

Ω1(P ) p > 2,
Ω2(P ) p = 2.

We assert that Ω(P ) = P . Otherwise, if Ω(P ) 6= P , then p′-group Q acts
nontrivially on p-group Ω(P ) by Lemma 2.2. Hence Ω(P )Q is an NSN-group
by hypothesis and so we have p > q by Lemma 2.5(2). Since NP (Q) > 1, we
have that NΩ1(P )Q(Q) = Ω1(P )Q, so Ω1(P )Q = Ω1(P ) × Q, Q acts trivially
on Ω(P ), a contradiction. Thus Ω(P ) = P .

Now we claim that CP (Q) = NP (Q) > 1. In fact, let N = NP (Q) =
P ∩NG(Q) ENG(Q). Then Q ≤ NG(N) and so NQ = N ×Q, which implies
that N ≤ CP (Q). Hence CP (Q) = N = NP (Q). If Ω1(P ) � P , then Ω1(P )Q
is an NSN-group and so Ω1(P ) ≤ CP (Q) by the structure of NSN-groups.

Suppose that P = Q8 × E, where E is a nontrivial elementary abelian
2-subgroup. If Q8 ≤ CP (Q), then P ≤ CP (Q) since Ω1(P ) ≤ CP (Q), a
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contradiction. Hence Q8 � CP (Q). Moreover, let Q∗ be a maximal subgroup
of Q. Then PQ∗ is an NSN-groups. By Lemma 2.5, we have Q∗ ≤ CG(P ),
which implies that Q has a unique maximal subgroup, that is, Q is cyclic. We
now prove that G is a minimal non-nilpotent group. Let H be a nontrivial
subgroup of G. If H does not contain any Sylow q-subgroup of G, then H
is obviously nilpotent since Ω1(P ) × Φ(Q) ≤ Z(G). So we may assume that
Q ≤ H without loss of generality. If is not nilpotent, then we have by Lemma
2.5 that H = Q⋊D is an NSN-group, where D is a cyclic subgroup with order
4. Consider the group F = (Q⋊D)×E. Obviously, F is a proper subgroup of
G and so is an NSN-group. But on the other hand, D is neither normal in G nor
self-normalizing, a contradiction. Thus H is nilpotent and so G is a minimal
non-nilpotent group. By the structure of minimal non-nilpotent groups, we
know that G is a minimal non-Dedekind-group, a contradiction.

If P = Q8, then G = Q8 ⋊ Q. Since Aut(Q8) = S4, we have that Q is a 3-
group. Now we claim that Q is cyclic. Otherwise, let Q1 and Q2 be two distinct
maximal subgroups of Q. Then Q8Qi, i = 1, 2, are NSN-groups by hypothesis
and hence Q8Qi = Q8 ×Qi for Ω1(Q8) ≤ CG(Qi), i = 1, 2. It follows that Q is
normal in G, a contradiction. Thus G = Q8⋊C3m and Z(G) = Ω1(Q8)Φ(C3m).
That is, G is of type (3).

If Ω1(P ) = P , then P is an elementary abelian p-subgroup. In this case,
CP (Q) is a Q-invariant direct factor of P . Applying Lemma 2.3, we get that
there exist two Q-invariant proper subgroups A and B of P such that P =
A × B. Now, both AQ and BQ are proper subgroups of G. Since Q is not
normal in G, not both A and B can centralize Q. Without loss of generality,
suppose that A � CP (Q). Notice that CP (Q) = NP (Q) > 1. One has AQ � G
and so AQ is a non-nilpotent NSN-group. By Lemma 2.5(2), p > q and every
subgroup of A is Q-invariant, Q is cyclic and Φ(Q) centralizes A. Let X be
a minimal subgroup of A of order p such that X � CP (Q) and Y be any
minimal subgroup of CP (Q). Then Y × (X ⋊ Q) is not an NSN-group since
X < NG(X) = X×Y ×Φ(Q) � G. Thus we get G = Y × (X⋊Q), P = X×Y
is an elementary abelian p-subgroup of order p2, and Q is cyclic. Suppose that
|Q| = qn. Then we have obviously that |Z(G)| = pqn−1. It follows that G is of
type (7). Thus the proof is completed. �

Lemma 3.7. Let G be a minimal non-NSN-group. Suppose there exists exactly

two distinct primes p, q ∈ π(G) such that the Sylow p-subgroups and the Sylow

q-subgroups of G are not normal in G. Then G is isomorphic to G = Cr ⋊
(Cp × Cq), where p, q and r are distinct primes, r > q > p and Z(G) = 1.

Proof. By Lemma 3.5, we may assume thatG = PQR, where P ∈ Sylp(G), Q ∈
Sylq(G) and R ∈ Sylr(G), P and Q are not normal in G and REG. Then by
Lemma 2.5 and assumption, both P and Q are cyclic.

(1) Suppose that PQ = P × Q. Then both PR and QR are non-nilpotent
NSN-groups and NR(P ) = NR(Q) = 1. By Lemma 2.5(2), we may choose a
maximal subgroup R∗ of R. The subgroup K = R∗⋊ (P ×Q) is an NSN-group
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by hypothesis and P 5 K since NR(P ) = 1. However, NK(P ) ≥ PQ > P , a
contradiction. Thus R is cyclic of prime order and G = Cr ⋊ (P × Q). Since
Φ(P ) ≤ Z(G), we know that L = Cr ⋊ (Φ(P ) × Q) = Φ(P ) × (Cr ⋊Q) is an
NSN-group. In this case, Q 5 L, but NL(Q) ≥ QΦ(P ). Hence Φ(P ) = 1 and
P is cyclic of prime order. By the same argument, we have that Q is also of
prime order. Thus G = Cr ⋊ (Cp × Cq), where p, q and r are distinct primes,
p, q < r and Z(G) = 1.

(2) Suppose that PQ = P ⋊Q. Then PR = R⋊P and NR(P ) = 1. Choose
a maximal subgroup R∗ of R and let T = R∗ ⋊ (P ⋊Q). Then T is an NSN-
group by hypothesis and P 5 T if R∗ 6= 1. However, NT (Q) ≥ PQ > Q, hence
R∗ = 1 and R is cyclic of prime order. We have the following two cases:

(i) Suppose RQ = R ⋊ Q. Let Q∗ be the maximal subgroup of Q. Then
U = Cr⋊ (P ⋊Q∗) is an NSN-group and P 5 U . On the other hand, NU (P ) ≥
PQ∗ > P , a contradiction. Hence Q∗ = 1 and Q is of prime order and so
G = Cr ⋊ (Cpm ⋊ Cq). Let V = Cpm ⋊ Cq. Then V/CV (Cr) ≤ Aut(Cr) is a
cyclic group, which forces that Cpm ≤ CV (Cr). Then Cpm EG, a contradiction.

(ii) Suppose RQ = R × Q. Let P ∗ be the maximal subgroup of P . Then
W = Cr ⋊ (P ∗ ⋊ Q) is an NSN-group and Q 5 W . On the other hand,
NW (Q) ≥ CrQ > Q, a contradiction. Hence P ∗ = 1 and P is of prime order.
Hence G = Cr ⋊ (Cp ⋊ Cqn). By the same argument as that in the above
paragraph, we come to a contradiction. Thus the proof is completed. �

Proof of Main Theorem. It follows from Lemma 3.1, Lemma 3.2, Lemma 3.6
and Lemma 3.7. �
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