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AVOIDING PERMUTATIONS AND THE NARAYANA

NUMBERS

Youngja Park and Seungkyung Park

Abstract. We study 132 avoiding permutations that also avoid (2r +
1)(2r+2) · · · 12 but contain (2r−1)(2r) · · · 12 pattern. We find an identity
between the number of these permutations and the Narayana number. We
also present relations between 132 avoiding permutations and polygon
dissections. Finally, a generalization of these permutations is obtained.

1. Introduction

Avoiding permutations of certain patterns have been studied over the years.
Especially, the number of avoiding permutations of pattern 132 with r descents
is the Narayana number N(n, k) (See [3]). We study 132-avoiding permutations
that avoid another pattern but contain some other pattern.

Let Sn be the set of permutations on [n] := {1, 2, . . . , n}. For π ∈ Sn

and τ ∈ Sk, we say that π contains τ -pattern if there exists a subsequence
1 ≤ i1 < i2 < · · · < ik ≤ n such that (πi1πi2 · · ·πik) is in the same relative
order as τ . We say that π is τ -avoiding if such a subsequence does not exist.
The set of all τ -avoiding permutations in Sn is denoted by Sn(τ). The set of
all permutations containing τ in Sn is denoted by Sn(τ ). So Sn(σ1, σ2) is the
set of all permutations avoiding σ1 but containing σ2 in Sn.

We consider the case of τr = (2r− 1)(2r)(2r− 3)(2r− 2) · · · 12 pattern, and
enumerate the number of permutations with i ascents in Sn(132, τr+1, τr) for
r ≥ 1, and denote the set by W i

n(r). We generalize this set with the pattern
((r− 1)d+1) · · · (rd− 1)(rd) · · · (12 · · · d) by τr,d and W i

n(r, d), the set of these
permutations with i ascents in Sn(132, τr+1,d, τr,d). We found that if d = 2 in
our formula, then the number is the same as in the following identity for d = 2
obtained by Sulanke([5]):

d−1
∏

i=0

(

m+ n+ i

n

)(

n+ i

n

)−1

=
∑

k≥0

(

dn+m− k

dn

)

N(d, n, k),
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where N(d, n, k) is the d-dimensional Narayana Numbers. He used Stanley’s
P-partitions theory and MacMahon’s work. Callan [1] also found the same
identity by counting Dyck paths according to the number of “plateaus”. But
for d ≥ 3, our numbers are different from theirs.

In Section 2, we prove combinatorially that N(n, i+1) =
∑i

r=1w
i
n(r), where

|W i
n(r)| = wi

n(r) by Algorithms A, B, C, and D on avoiding permutations.
Although we use the four algorithms, they give some applications on them-
selves. Moreover, we can generalize W i

n(r) further using those algorithms to
get W i

n(r, d). If d = 2, W i
n(r, 2) = W i

n(r), which is the same as the results of
Sulanke and Callan. We discuss this in Section 5.

Section 3 deals with the polygon dissection numbers derived by Algorithms
A ∼ D. In Section 4, we give the number of the avoiding permutations that
have exactly one pattern of τr .

2. Avoiding permutations with the specific restrictions

We call i a descent (resp., ascent) of a permutation π = π1 · · ·πn if πi > πi+1

(resp., πi < πi+1) for i = 1, 2, . . . , n− 1 and count an extra descent at the end
of each permutation. We denote by des(π) the number of descents in π.

An ascending run of a permutation is an increasing sequence of consecutive
entries. Thus if π has k descents, then it has k ascending runs. If ai+1 · · ·ai+j is
an ascending run, then we say it is of length j. Specially, we call an ascending
run with length more than 1 in 132 avoiding permutation a long ascending

run. Note that any permutation can be decomposed into ascending runs, each
of which is denoted by Ij . For example, if π = 5631247, then π = 56|3|1247 has
three ascending runs separated by bars, namely, I1 = 56, I2 = 3, and I3 = 1247
of lengths 2, 1, and 4, respectively. We represent by IjIk the concatenation of
two runs of Ij and Ik.

Define τr :=(2r−1)(2r)(2r−3)(2r−2) · · · 12 for r ≥ 1. Then Sn(132, τr+1, τr)
is the set of all permutations that avoid the patterns 132 and τr+1 but contain
the pattern τr. Thus any permutation in Sn(132, τr+1, τr) must have at least r
ascending runs of length at least 2.

Let W i
n(r) be the set of permutations π in Sn(132, τr+1, τr) satisfying des(π)

= n−i. We write wi
n(r) for |W

i
n(r)|. Let Sn,r(132) be the set of all permutations

that avoid the pattern 132 and have r descents. Krattenthaler [3] showed that
the number of such permutations is the Narayana number N(n, r).

If π ∈ W i
n(r), then π = I1 · · · In−i, where each Ij is an ascending run.

Since π contains the pattern τr, there must be r ascending runs, where the
concatenation of any distinct pair of them contains a 3412 pattern. We call
these the basic ascending runs. Notice that any ascending run of length 1
cannot be a basic ascending run, and that the first ascending run of length
greater than 1 automatically becomes a basic ascending run.

The following theorem provides a closed formula for the number wi
n(r) using

this fact.
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Theorem 2.1. For i ≥ r ≥ 1, wi
n(r) = N(i, r)

(

n−r+i
n−r−i

)

, where N(i, r) =
1
i

(

i
r

)(

i
r−1

)

is the Narayana number.

Proof. Algorithm A shows φ(π) ∈ Si,r(132) and Algorithms B, C, and D show

the map φ is
(

n−r+i

n−r−i

)

-to-one function. To define a map φ : W i
n(r) → Si,r(132)

for a permutation π = a1 · · · an = I1 · · · In−i ∈ W i
n(r) with the descent set

{j1, . . . , jn−i}, we apply the following algorithm to π and the output φ(π)
becomes an 132-avoiding permutation with r descents.

If Ij is a long ascending run and Ik the next long ascending run, and if IjIk
does not contain a 3412 pattern, then we choose the first entry of Ik as dj for
j = 1, 2, . . . , n− i−1. Otherwise, choose the last element from each of the long
ascending runs. Let {d1, d2, . . . , dk, . . . , dn−i} be the chosen entries. Notice
that dn−i = an. We now delete dk’s according to the following algorithm:

Algorithm A

STEP 1. Delete dn−i = an.
STEP 2. For each k = 1, 2, . . . , n− i− 1,

(a) Subtract 1 from each entry before dk, and subtract 1 from each
entry greater than dk after dk.

(b) If there exist as before dk and at after dk with as = at, then
replace at by the number dk − 1. Then remove dk from the
ascending run.

Now we show that φ(π) ∈ Si,r(132) and that the map is a
(

n−r+i

n−r−i

)

-to-one
function.

Since we remove n − i entries from π, clearly, φ(π) is a permutation on i

letters. Moreover, for each k = 1, 2, . . . , n − i − 1, the permutation after Step
2 is still 132-avoiding. Notice that after the one run of Step 2, every entry is
distinct. If (b) of Step 2 does not occur, then clearly 132-avoiding is preserved.
For the case of (b), every number appearing between dk − 2 and dk − 1 is less
than dk − 2, which means that it preserves 132-avoiding after Step (b).

Notice also that all length 1 ascending runs in π are removed by the algo-
rithm. So ignore those runs and only consider the long ascending runs. Recall
that the first long ascending run is the first basic ascending run. If the next
ascending run is a basic ascending run, then removing the last entry in the first
one does not change the descent. But if it is a nonbasic ascending run, which
means that there is no 3412-pattern in the concatenation of the two, then re-
moving the first element by Step 2 deletes the descent. So the next ascending
run is merged to the first one, which becomes a basic ascending run with a
bigger size. As we proceed with the algorithm, the number of basic ascending
runs does not change.

Thus when the algorithm is completed, we obtain a permutation on i letters
with r descents. In other words, φ(π) ∈ Si,r(132).
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Secondly, we show that the map is a
(

n−r+i
n−r−i

)

-to-one function. Let φ(π) =

σ = b1 · · · bi ∈ Si,r(132) and the descent set of σ be Des(σ) = {j1, . . . , jr}, jr =
i.

We will insert r entries into σ to obtain σ∗ = c1 · · · ci+r ∈ Si+r,r(132), where
Des(σ∗) = {j1 +1, . . . , jr + r}. Let σ = I1 · · · Ir, where Ik’s are ascending runs
and let ak,lk be the last entry of Ik.

Algorithm B

STEP 1. For each k = r − 1, r − 2, . . . , 1,
(a) Insert the number ak,lk + 1 into Ik as its last entry.
(b) Add 1 to each entry in Ij including ak,lk + 1 for 1 ≤ j ≤ k, and

add 1 to each entry in Ij , j > k, that is greater than or equal to
ak,lk + 2. We denote by ∗ the output of this step.

(c) If an entry a∗s,is in I∗s is the same as an entry a∗t,it in I∗t with
k ≤ s < t, then replace a∗t,it by a∗s,1s − 1, where a∗s,1s is the first
entry of I∗s . Repeat this process until all entries in I∗j , j ≥ k,
become distinct.

STEP 2. Attach the unused number from [i+ r] = {1, 2, . . . , i+ r} to the end
of the last ascending run Ir, which becomes I∗r = ci+r.

The output σ∗ = c1 · · · ci+r = I∗1 · · · I
∗
r is a permutation on i + r letters

that avoids 132-pattern. Before Step 2, since every number between 1 and the
largest element ar,lr of I∗r is used from the construction, the unused number
must be greater than ar,lr . Thus attaching the unused one to the end of I∗r
does not produce a descent. Therefore, the number of descents of σ∗ is still r.

By (a), (b) of Step1 and Step 2, each |I∗j | ≥ 2, 1 ≤ j ≤ r. By (c) of Step 1,
each I∗j , 1 ≤ j ≤ r, has at least two elements less than the first element of I∗j−1.
So it has r basic ascending runs.

Therefore, σ∗ has τr pattern and σ∗ avoids τr+1.
Now we insert m(0 ≤ m ≤ n − i − r) numbers into the basic ascending

runs of σ∗ = I∗1 · · · I
∗
r from right to left, creating m descents, to obtain σ∗∗ in

Algorithm C.

Algorithm C

For each m of 0, 1, . . . , n − i − r, find all possible positions that are spaces
between ak,2k and ak,lk from each I∗k with repetition allowed for k = 1, 2, . . . , r−
1. For k = r, include one more space, the last space. Suppose that we select
tk positions for each k = r, r − 1, . . . , 1 and

∑

k tk = m with tk ≥ 0. We insert
tk numbers into the selected positions I∗k .

For each m = 0, 1, . . . , n− i− r and for k = r, r − 1, . . . , 1,

STEP 1. For the chosen tk positions from the possible spaces from I∗k , add the
number tk to each entry in σ∗ that is greater than or equal to ak,1k .

STEP 2. Insert tk numbers of ak,1k + (tk − 1), . . . , ak,1k + 1, ak,1k into the
positions selected from right to left, keeping this decreasing order.
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Thus there are
((

i−r+1
m

))

=
(

i−r+m
m

)

ways to get σ∗∗.
Finally, we construct σ∗∗∗ from σ∗∗ to complete the proof. We insert n −

i − r −m numbers in the fronts of I∗∗k ’s with repetition allowed from right to
left in such a way that every time we place a number a new descent must be
created.

Among r +m ascending runs in σ∗∗, there are r basic ascending runs and
we denote them by I∗∗k = ak,1kak,2k · · · ak,lk for 1 ≤ k ≤ r. Define lk as lk =
ak−1,1k−1

−ak,1k−tk−1 for k = 2, 3, . . . , r, and l1 = (i+r+m+1)−a1,11. Suppose
that uk numbers h1, . . . , huk

are placed in front of the kth basic ascending run
I∗∗k and that

∑

k uk = n − i − r −m. Then these numbers should satisfy the
conditions ak,2k +uk−j ≤ hj ≤ ak,2k +uk−j+ lk−1 and h1 > h2 > · · · > huk

.
Suppose that we insert uk numbers in front of I∗∗k for each k = 1, 2, . . . , r

and let
∑r

k=1 uk = n− i− r −m with uk ≥ 0.
For each of k = r, r − 1, . . . , 1,

Algorithm D

STEP 1. Find lk for all k = r, r − 1, . . . , 1.
STEP 2. For k = r, r − 1, . . . , 1,

(a) For j = uk, uk − 1, . . . , 1, find the range for hj .
(b) Find all possible sequences with h1 > h2 > · · · > huk−1 > huk

,
then place each of such sequences in front of Ik in the order of
huk

, huk−1, . . . , h2, h1 from right to left.
(c) Each time hj is inserted, add 1 to each entry of σ∗∗ that is

greater than or equal to hj .

After completing Algorithms B through D, we obtain a permutation σ∗∗∗

on n letters and by our construction, it is clear that σ∗∗∗ ∈ W i
n(r). Since

∑

k lk = i+ r, the total number of ways of inserting n− i− r−m numbers into

i+ r positions with repetition allowed is
(

(

i+r

n−i−r−m

)

)

=
(

n−m−1
i+r−1

)

.

By Vandermonde’s, we get

n−i−r
∑

m=0

(

i− r +m

m

)(

n−m− 1

i+ r − 1

)

=

(

n− r + i

n− r − i

)

.

Thus the map φ is a
(

n−r+i

n−r−i

)

-to-one function.

Therefore, wi
n(r) = N(i, r)

(

n−r+i
n−r−i

)

= 1
i

(

i
r

)(

i
r−1

)(

n−r+i
n−r−i

)

. �

Example 2.2. Apply Algorithm A to the following permutations π to obtain
φ(π).

π = 56|3|1247 → 56|3|124 → 4|3|124 → 4|3|125 → 3124 = φ(5631247).
π = 56|234|17 → 56|234|1 → 4|234|1 → 4|235|1 → 3124 = φ(5623417).

Example 2.3. Clearly, S2,2(132) = {21}. We apply Algorithm B through
D to find all π’s on n = 6 letters whose image is φ(π) = σ = 21. Since
0 ≤ m ≤ n− i− r = 6− 2− 2 = 2, we consider each of these three cases:



534 YOUNGJA PARK AND SEUNGKYUNG PARK

First, apply Algorithm B to σ = 2|1 to obtain σ∗: σ = 2|1 → 23|1 → 34|1 →
34|12 = σ∗.

Now, if m = 2, apply Algorithm C to σ∗ to get σ∗∗: σ∗ = 34|12 → 56|34 →
56|3421 = σ∗∗. We have found a permutation in W 2

6 (2) so we do not need to
apply Algorithm D.

For m = 1, by Algorithm C, σ∗ = 34|12 → 45|23 → 45|231 = σ∗∗. By
Algorithm D, to insert in front of the first basic ascending run 45, 5 ≤ h1 ≤ 6
since l1 = i+r+m+1−a1,11 = 2+2+1+1−4 = 2. Similarly, to insert in front
of the second basic ascending run 23, 3 ≤ h1 ≤ 4 since l2 = a1,11 − a2,12 − 0 =
4− 2 = 2. Thus we will have four outputs of Algorithm D.

σ∗∗ = 45|23|1 → 545|23|1 → 546|231 = σ∗∗∗, or σ∗∗ = 45|23|1 → 645|23|1
= σ∗∗∗, σ∗∗ = 45|23|1 → 453|23|1 → 563|24|1 = σ∗∗∗, σ∗∗ = 45|23|1 →
454|23|1 → 564|23|1 = σ∗∗∗.

Finally, for m = 0, we have to insert n − i − r − m = 6 − 2 − 2 − 0 = 2
numbers according to Algorithm D into two positions of σ∗∗ = 34|12 in front
of I1 = 34(a), I2 = 12(b), or one of each(c).

First, we find lk’s: l1 = 2 and l2 = 2.
Case (a): 5 ≤ h1 ≤ 6 and 4 ≤ h2 ≤ 5.

34|12 →







534|12 → 653412
434|12 → 43512 → 643512
434|12 → 43512 → 5435|12 → 543612.

Case (b): 3 ≤ h1 ≤ 4 and 2 ≤ h2 ≤ 3.

34|12 →







34|312 → 45|312 → 45|4312 → 564312
34|212 → 45|213 → 45|4213 → 564213
34|212 → 45|213 → 45|3213 → 563214.

Case (C): for inserting 2 ≤ h1 ≤ 3 in front of I2 = 12, then for 5 ≤ h1 ≤ 6 in
front of the first run, one at a time.

34|12 →















34|312 → 45|312 → 645|312
34|312 → 45|312 → 545|312 → 546312
34|212 → 45|213 → 645213
34|212 → 45|213 → 545213 → 546213.

Thus we have

W 2
6 (2) = {563421, 645231, 546231, 564231, 563241, 564312, 564213, 563214,

653412, 643512, 543612, 645312, 546312, 645213, 546213}.

Corollary 2.4.

i
∑

r=1

wi
n(r) =

i
∑

r=1

N(i, r)

(

n− r + i

n− r − i

)

= N(n, i+ 1).
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Table 1. wi
n(r)

n 1 2 3 4 5
r\i 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4
0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 3 1 0 6 5 1 0 10 15 7 1
2 0 0 0 0 0 0 0 0 1 0 0 0 5 3 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n 6 7 8
r\i 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 15 35 28 9 1 0 21 70 84 45 11 1 0 28
2 0 0 15 21 6 0 0 0 35 84 54 10 0 0 0
3 0 0 0 1 0 0 0 0 0 7 6 0 0 0 0

Proof. Since wi
n(r) = N(i, r)

(

n−r+i

n−r−i

)

,

i
∑

r=1

wi
n(r) =

i
∑

r=1

N(i, r)

(

n− r + i

n− r − i

)

.

Moreover,
∑i

r=1 w
i
n(r) = Sn,n−i(132), where Sn,n−i(132) is the set of 132 avoid-

ing permutations on n letters with n − i descents. This is known to be
Sn,n−i(132) = N(n, n− i) = N(n, i+ 1) from [3]. �

Remark 2.5. From the definition of wi
n(r), we provide that

|Sn+2r(132, τr+1, τr)| =
n+r
∑

i=r

N(i, r)

(

n+ r + i

n+ r − i

)

for r ≥ 1, n ≥ 0. In particular, we take the sequence of |Sn+2(132, 3412, 12)| =
F2(n+1) − 1 is {1, 4, 12, 33, 88, 232, . . .} for n ≥ 0, r = 1 because the sequence

of |Sn+2(132, 3412)| = |Sn+2(132, 3412, 12) ∪ {n(n − 1) · · · 21}| = F2(n+1) is
{1, 2, 5, 13, 34, 89, . . .} (see [6], [4]), where n ≥ 0 and Fn is the Fibonacci number.

3. An application of the algorithms

We denote the set of permutations with j long ascending runs in Sn(132) by
P (n, j). We write pn(j) for |P (n, j)|. Let n = 2j+m(j,m ≥ 0). A permutation
with j long ascending runs in 132 avoiding permutation has s(0 ≤ s ≤ j − 1)
ascending runs and j − s basic ascending runs. Suppose that π ∈ P (2j +m, j)
has t(0 ≤ t ≤ m) ascending runs with length 1. Then π has j+m−t ascents. To
obtain the number of permutations with j long ascending runs in 132 avoiding
permutation, we use Algorithms A, B, C, and D.
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Table 2. |Sn+2r(132, τr+1, τr)|

n\r 1 2 3 4 5
0 1 1 1 1 1
1 4 8 13 19 26
2 12 42 102 205 366
3 33 183 624 1650 3716
4 88 717 3275 11020 30520
5 232 2622 15473 64553 215481

Proposition 3.1. Define pm(0) = 1 for j = 0. Then for j ≥ 1,

p2j+m(j) =
m
∑

t=0

[

j−1
∑

s=0

N(j +m− t, j − s)

(

m− t+ s

s

)

]

(

2j +m

t

)

,

where N(i, r) = 1
i

(

i

r

)(

i

r−1

)

is the Narayana number and i ≥ r ≥ 1.

Proof. Every long ascending run is merged to a basic ascending run by Al-
gorithm A. So π ∈ P (2j + m, j) becomes φ(π) ∈ Sj+m−t,j−s(132), where j

is the number of long ascending runs. By Algorithm B, j − s basic ascend-
ing runs are formed. So we obtain a σ∗ ∈ S2j+m−t−s,j−s(132). By making
s long ascending runs but not basic ascending run, we get j long ascending
runs in Algorithm C, where repetition is not allowed and the last space is ex-

cluded. Thus there are
(

j+m−t−(j−s)
s

)

=
(

m−t+s
s

)

choices. Finally, by adding
t ascending runs with length 1 at the front of each ascending run and the last
space in Algorithm D, where l1 = 2j + m − t + 1 − a1,11 , lj+1 = aj,1j , lk =

ak−1,1k−1
−ak,1k , (2 ≤ k ≤ j) and

∑j+1
k=1 uk = t,

∑j+1
k=1 lk = 2j+m− t+1. Also,

hq = ak−1,1k−1
+ uk − q at the last space and the front of ascending run, not

basic ascending run. At the front of basic ascending run, ak,2k +uk− q ≤ hq ≤

ak,2k + uk − q+(lk − 1). There are
((

2j+m−t+1
t

))

=
(

2j+m
t

)

choices. Therefore,

we have
∑m

t=0

[

∑j−1
s=0 N(j +m− t, j − s)

(

m−t+s
s

)

]

(

2j+m
t

)

. �

Now we consider the inner summation
[

∑j−1
s=0 N(j +m− t, j − s)

(

m−t+s

s

)

]

.

This counts the permutations with j long ascending runs and not with ascend-
ing runs of length 1 in Sn(132). Dyck n path, Dn, is the set of paths on the
square lattice with steps (1, 1) and (1,−1) from (0, 0) to (2n, 0) that never
falls below the x-axis. We denote steps (1, 1) and (1,−1) by U(upstep) and
D(downstep), respectively. We call a two consecutive step UD a peak. By the
bijection between Sn(132) and Dyck n paths Dn in [3], we see that the above
inner summation is equal to the number of paths with j UDDs and j peak
UDs in D2j+m−t. Callan [2] presented that dissections of a regular (n+ 2)gon
with n − 1 − k noncrossing diagonals correspond to k−marked Dyck n paths
in one-to-one fashion. We insert UD to each peak at m − t marked Dyck
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j +m− t path. Then we insert UD to unmarked interior vertex after deleting
the marked interior vertex, where we use interior vertices of down steps instead
of up steps. So we expect that a Dyck 2j + m − t path with j UDDs and j

peak UDs correspond to an m− t marked Dyck path. Thus we can represent
dissection numbers in terms of Narayana number.

Corollary 3.2.

dj−1(j +m− t+ 2) =

j−1
∑

s=0

N(j +m− t, j − s)

(

m− t+ s

s

)

,

where j−1 is the number of noncrossing diagonals in regular (j+m−t+2)gon.

Therefore, Proposition 3.1 becomes:

Corollary 3.3. For j ≥ 1,

p2j+m(j) =
m
∑

t=0

dj−1(j +m− t+ 2)

(

2j +m

t

)

.

In fact, since the strings of UUD and UDD are equidistributed, pn(j) in
Sn(132) is equal to the number of Dyck n paths with j long ascents (A091156
[4]).

4. Permutations with τr pattern exactly once in Sn+2r−1(132, τr+1)

We count the number of permutations that contain τr pattern exactly once
in Sn+2r−1(132, τr+1) (n ≥ 1, r ≥ 2) by Algorithms A ∼ D. We denote the
set of permutations that contain τr pattern exactly once in W i

n+2r−1(r) by

W
1,i
n+2r−1(r). Let E

r
n be the set of permutations that contains τr pattern exactly

once in Sn+2r−1(132, τr+1). We denote |Er
n| by ern(n ≥ 1, r ≥ 2). Then ern =

∑n+r−1
i=r |W 1,i

n+2r−1(r)|.

Proposition 4.1. Let er1 = 1, w0
i−t(1) = 1 and w0

i−t(t) = 0 (t ≥ 2). Then

ern =

n+r−1
∑

i=r

(

r−1
∑

t=1

wi−r
i−t (t)

)

(

n− 1 + i

n+ r − 1− i

)

=

n+r−1
∑

i=r

(

r−1
∑

t=1

N(i− r, t)

(

2i− 2t− r

2i− 2r

)

)

(

n− 1 + i

n+ r − 1− i

)

.

Proof. Since each W i
n(r) is disjoint and W i

n(r) = ∅ if i < r or n − i < r,

we know that each W
1,i
n+2r−1(r) are disjoint and Er

n = ∪̇
n+r−1
i=r W

1,i
n+2r−1(r).

Since π ∈ W
1,i
n+2r−1(r) has τr pattern exactly once, the length of the first basic

ascending run is 2 and other r−1 basic ascending runs have lengths greater than
or equal to 2, where only the first two entries of each basic ascending run are less
than the first entry of the preceding ascending run. Also, non-basic ascending
runs of lengths greater than or equal to 2 must occur after the second basic
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ascending run. Otherwise, π would have τr pattern more than once. To obtain
|W 1,i

n+2r−1(r)|, we use Algorithms A ∼ D. All elements except the first element
in each ascending run with length greater than or equal to 2 in φ(π) are larger
than the elements before the ascending run. Each ascending run with length
more than or equal to 3 in φ(π) has at least two elements less than the second
elements after the ascending run. We consider each ascending run with length
greater than or equal to 3 except the first element. Let φ(π) have t ascending
runs with length more than or equal to 3. If we reverse the order of ascending
runs, we regard φ(π) as a permutation in W i−r

i−t (t). So the number of φ(π) is

|W i−r
i−t (t)|(1 ≤ t ≤ r−1) by the aforementioned reasons. There are (( i−r+1

m )) =
(

i−r+m

m

)

choices for σ∗∗. For σ∗∗∗, we change ak,2k of I∗∗k in the range of hj

into ak,2k + 1 and change lk − 1 into lk − 2 for exactly one τr pattern. So
ak,2k+1+ut−j ≤ hj ≤ ak,2k+1+ut−j+lk−2, (1 ≤ j ≤ t). Also,

∑r

k=1(lk−1) =

i. Then we get
((

i
n+2r−1−i−r−m

))

=
(

n+r−2−m
n+r−1−i−m

)

=
(

n+r−2−m
i−1

)

choices for

σ∗∗∗. By Vandermonde’s, we get
∑n+r−1−i

m=0

(

i−r+m
m

)(

n+r−2−m
i−1

)

=
(

n−1+i
n+r−1−i

)

.
Therefore, for n ≥ 2, r ≥ 2,

|Er
n| = ern =

n+r−1
∑

i=r

|W 1,i
n+2r−1(r)| =

n+r−1
∑

i=r

(

r−1
∑

t=1

wi−r
i−t (t)

)

(

n+ i− 1

n+ r − 1− i

)

=

n+r−1
∑

i=r

(

r−1
∑

t=1

N(i− r, t)

(

2i− 2t− r

2i− 2r

)

)

(

n− 1 + i

n+ r − 1− i

)

.

In particular, if r = 2,

e2n =

n+1
∑

i=2

(

n− 1 + i

n+ 1− i

)

= F2n − 1

= |Sn+1(132, 3412, 12)| =
n
∑

i=1

N(i, 1)

(

n+ i

n− i

)

.

�

5. A generalization

We generalize Theorem 2.1 to the case of any length d ≥ 3. Let us denote
the pattern ((r−1)d+1) · · · (rd−1)(rd) · · · (12 · · ·d) by τr,d and write W i

n(r, d)
for the set of these permutations with i ascents in Sn(132, τr+1,d, τr,d), and
|W i

n(r, d)| = wi
n(r, d). We use Algorithms A, B, C, and D again. Since π ∈

W i
n(r, d), there should be r ascending runs, where the concatenation of any

distinct pair of them contains a (d + 1 · · · 2d)(12 · · · d) pattern. We call them
the d-basic ascending runs. Notice that any ascending run of length 1, . . . , d−1
cannot be a basic ascending run, and that the first ascending run of length
greater than d− 1 automatically becomes a basic ascending run.
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Proposition 5.1. For d ≥ 3,

wi
n(r, d) =

i−(d−1)r
∑

j=0

w
i−r−j
i (r, d− 1)

(

n− j − r + i

n− j − r − i

)

.

Proof. By Algorithm A, π ∈ W i
n(r, d) becomes φ(π) ∈ W

i−r−j
i (r, d− 1), where

j is the number of ascending runs with length greater than or equal 2 which are
not d-basic ascending runs. So 0 ≤ j ≤ Min(i−(d−1)r, n−i−r). By Algorithm

B, we obtain a σ∗ ∈ Si+r+j,r+j(132, τr+1,d, τr,d) from σ ∈ W
i−r−j
i (r, d−1). We

use Algorithms C and D to increase n− i− r− j descents. By Vandermonde’s,
we get

n−i−r−j
∑

m=0

(

i− r − j +m

m

)(

n−m− 1

i+ r + j − 1

)

=

(

n− r − j + i

n− r − j − i

)

.

Therefore,

wi
n(r, d) =

i−(d−1)r
∑

j=0

w
i−r−j
i (r, d− 1)

(

n− j − r + i

n− j − r − i

)

.

�

We know that for fixed n,i, and d, the sum of wi
n(r, d) for all r ≥ 0 is also a

Narayana number.

Table 3. wi
n(r, 3)

n 1 2 3 4 5
r\i 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4
0 1 1 1 1 3 0 1 6 1 0 1 10 5 0 0
1 0 0 0 0 0 1 0 0 5 1 0 0 15 10 1

n 6 7 8
r\i 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1
0 1 15 15 1 0 0 1 21 35 7 0 0 0 1 28
1 0 0 35 49 14 1 0 0 70 168 96 18 1 0 0
2 0 0 0 0 1 0 0 0 0 0 9 3 0 0 0

For the case when d = 3 and r = 0,

|Sn+3r(132, τr+1,3, τr,3)| = |Sn(132, 123)| = 2n (A011782 on OEIS).

For the case when d = 4 and r = 0,

|Sn+3r(132, τr+1,4, τr,4)| = |Sn(132, 1234)| = F2n (A001519 on OEIS),

where Fn is the Fibonacci number.
These two cases present well-known numbers, but all other numbers of r ≥ 1

and d ≥ 3 appear to be new.
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Table 4. wi
n(r, 4)

n 1 2 3 4 5
r\i 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4
0 1 1 1 1 3 1 1 6 6 0 1 10 20 3 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 7 1

n 6 7 8
r\i 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1
0 1 15 50 22 1 0 1 21 105 91 15 0 0 1 28
1 0 0 0 28 14 1 0 0 0 84 90 21 1 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. Sn+3r(132, τr+1,3, τr,3), Sn+4r(132, τr+1,4, τr,4)

d = 3 d = 4
n\r 0 1 2 n\r 0 1 2
0 1 1 1 0 1 1 1
1 2 6 12 1 2 8 16
2 4 26 89 2 5 43 151
3 8 99 527 3 13 196 1100
4 16 353 2736 4 34 819 6853
5 32 1213 13036 5 89 3249 38455
6 64 4078 58489 6 233 12464 200306

By successively plugging in the initial condition wi
n(r, 2) = N(i, r)

(

n−r+i

n−r−i

)

,
which is Theorem 2.1, we obtain the following:

Corollary 5.2. Let αk = j1 + · · ·+ jk, jl ≥ 0, 1 ≤ k ≤ d− 2, α0 = 0.

wi
n(r, d) =

∑

αd−2≤i−(d−1)r

[

N(i− (d− 2)r − αd−2, r)

×
d−2
∏

q=1

(

2(i− qr − αd−2) + αd−2 − αq−1

2(i− qr − αq)

)(

n− α1 − r + i

n− α1 − r − i

)]

.

In particular, when d = 3 we have:

Corollary 5.3.

wi
n(r, 3) =

i−2r
∑

j=0

N(i− r − j, r)

(

2i− 2r − j

j

)(

n− j − r + i

n− j − r − i

)

.
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