DOI QR코드

DOI QR Code

An Efficient Conjugate Addition of Dialkyl Phosphite to Electron-Deficient Olefins: The Use of a Nucleophilic Organocatalyst to Form a Strong Base

  • Kim, Sung Hwan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Se Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Hyung Jin (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Jae Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2012.12.12
  • Accepted : 2012.12.30
  • Published : 2013.03.20

Abstract

Keywords

References

  1. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. https://doi.org/10.1021/cr010043d
  2. Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447. https://doi.org/10.1021/cr900291g
  3. Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627. https://doi.org/10.2174/1385272023374094
  4. Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481. https://doi.org/10.5012/bkcs.2005.26.10.1481
  5. Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769. https://doi.org/10.1016/j.tet.2009.07.034
  6. Shi, M.; Wang, F.-J.; Zhao, M.-X.; Wei, Y. The Chemistry of the Morita-Baylis-Hillman Reaction; RSC Publishing: Cambridge, UK, 2011.
  7. Aroyan, C. E.; Dermenci, A.; Miller, S. J. Tetrahedron 2009, 65, 4069 https://doi.org/10.1016/j.tet.2009.02.066
  8. Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256. https://doi.org/10.1021/ja067139f
  9. Aroyan, C. E.; Dermenci, A.; Miller, S. J. J. Org. Chem. 2010, 75, 5784. https://doi.org/10.1021/jo101018t
  10. Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402. https://doi.org/10.1021/ja0121686
  11. White, D. A.; Baizer, M. M. Tetrahedron Lett. 1973, 14, 3597. https://doi.org/10.1016/S0040-4039(01)86980-X
  12. Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 8696. https://doi.org/10.1021/ja035232n
  13. Pedduri, Y.; Williamson, J. S. Tetrahedron Lett. 2008, 49, 6009. https://doi.org/10.1016/j.tetlet.2008.07.180
  14. Gimbert, C.; Lumbierres, M.; Marchi, C.; Moreno-Manas, M.; Sebastian, R. M.; Vallribera, A. Tetrahedron 2005, 61, 8598. https://doi.org/10.1016/j.tet.2005.07.005
  15. Jenner, G. Tetrahedron 2002,58, 4311. https://doi.org/10.1016/S0040-4020(02)00347-2
  16. Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. https://doi.org/10.1002/adsc.200404087
  17. Wang, X.; Fang, F.; Zhao, C.; Tian, S.-K. Tetrahedron Lett. 2008, 49, 6442. https://doi.org/10.1016/j.tetlet.2008.08.092
  18. Enders, D.; Saint-Dizier, A.; Lannou, M.-I.; Lenzen, A. Eur. J. Org. Chem. 2006, 29.
  19. Wozniak, L. A.; Bukowiecka-Matusiak, M.; Burzynska-Pedziwatr, I.; Stec, W. J. Tetrahedron Lett. 2009, 50, 2620. https://doi.org/10.1016/j.tetlet.2009.01.153
  20. Balaraman, E.; Srinivas, V.; Kumara Swamy, K. C. Tetrahedron 2009, 65, 7603. https://doi.org/10.1016/j.tet.2009.06.096
  21. Balint, E.; Takacs, J.; Drahos, L.; Keglevich, G. Heteroatom Chem. 2012, 23, 235. https://doi.org/10.1002/hc.21007
  22. Jiang, Z.; Zhang, Y.; Ye, W.; Tan, C.-H. Tetrahedron Lett. 2007, 48, 51. https://doi.org/10.1016/j.tetlet.2006.11.019
  23. Fonvielle, M.; Mariano, S.; Therisod, M. Bioorg. Med. Chem. Lett. 2005, 15, 2906. https://doi.org/10.1016/j.bmcl.2005.03.061
  24. Simoni, D.; Invidiata, F. P.; Manferdini, M.; Lampronti, I.; Rondanin, R.; Roberti, M.; Pollini, G. P. Tetrahedron Lett. 1998, 39, 7615. https://doi.org/10.1016/S0040-4039(98)01656-6
  25. Castelot-Deliencourt, G.; Roger, E.; Pannecoucke, X.; Quirion, J.-C. Eur. J. Org. Chem. 2001, 3031.
  26. Keglevich, G.; Sipos, M.; Takacs, D.; Greiner, I. Heteroatom Chem. 2007, 18, 226. https://doi.org/10.1002/hc.20266
  27. Martinez-Castro, E.; Lopez, O.; Maya, I.; Fernandez-Bolanos, J. G.; Petrini, M. Green Chem. 2010, 12, 1171. https://doi.org/10.1039/c0gc00026d
  28. Albouy, D.; Lasperas, M.; Etemad-Moghadam, G.; Koenig, M. Tetrahedron Lett. 1999, 40, 2311. https://doi.org/10.1016/S0040-4039(99)00189-6
  29. Semenzin, D.; Etemad-Moghadam, G.; Albouy, D.; Diallo, O.; Koenig, M. J. Org. Chem. 1997, 62, 2414. https://doi.org/10.1021/jo9622441
  30. Andaloussi, M.; Henriksson, L. M.; Wieckowska, A.; Lindh, M.; Bjorkelid, C.; Larsson, A. M.; Suresh, S.; Iyer, H.; Srinivasa, B. R.; Bergfors, T.; Unge, T.; Mowbray, S. L.; Larhed, M.; Jones, T. A.; Karlen, A. J. Med. Chem. 2011, 54, 4964. https://doi.org/10.1021/jm2000085
  31. Nordqvist, A.; Bjorkelid, C.; Andaloussi, M.; Jansson, A. M.; Mowbray, S. L.; Karlen, A.; Larhed, M. J. Org. Chem. 2011, 76, 8986. https://doi.org/10.1021/jo201715x
  32. Haemers, T.; Wiesner, J.; Busson, R.; Jomaa, H.; Van Calenbergh, S. Eur. J. Org. Chem. 2006, 3856.
  33. Crooks, S. L.; Robinson, M. B.; Koerner, J. F.; Johnson, R. L. J. Med. Chem. 1986, 29, 1988. https://doi.org/10.1021/jm00160a031
  34. Hwang, J.-M.; Islam, T.; Jung, K.-Y. Tetrahedron Lett. 2009, 50, 6076. https://doi.org/10.1016/j.tetlet.2009.08.059
  35. Hwang, J.-M.; Kwon, H.-B.; Lee, S.-B.; Jung, K.-Y. Bull. Korean Chem. Soc. 2009, 30, 239. https://doi.org/10.5012/bkcs.2009.30.1.239
  36. Harsanyi, K.; Domany, G.; Greiner, I.; Forintos, H.; Keglevich, G. Heteroatom Chem. 2005, 16, 562. https://doi.org/10.1002/hc.20142
  37. Patel, D. V.; Schmidt, R. J.; Biller, S. A.; Gordon, E. M.; Robinson, S. S.; Manne, V. J. Med. Chem. 1995, 38, 2906. https://doi.org/10.1021/jm00015a013
  38. Jakeman, D. L.; Ivory, A. J.; Williamson, M. P.; Blackburn, G. M. J. Med. Chem. 1998, 41, 4439. https://doi.org/10.1021/jm970839y
  39. Wasielewski, C.; Topolski, M.; Dembkowski, L. J. Prakt. Chem. 1989, 331, 507. https://doi.org/10.1002/prac.19893310325

Cited by

  1. Silver-catalyzed carbonphosphonation of α,α-diaryl allylic alcohols: synthesis of β-aryl-γ-ketophosphonates vol.12, pp.42, 2014, https://doi.org/10.1039/C4OB01739K
  2. Overview on the phosphonation of the C=X functional groups utilizing alkyl phosphites vol.47, pp.18, 2017, https://doi.org/10.1080/00397911.2017.1346811
  3. Recent advances in Michael addition of H-phosphonates vol.4, pp.49, 2014, https://doi.org/10.1039/c4ra04179h
  4. “One-Pot” Aminolysis/Thiol–Maleimide End-Group Functionalization of RAFT Polymers: Identifying and Preventing Michael Addition Side Reactions vol.49, pp.17, 2013, https://doi.org/10.1021/acs.macromol.6b01512
  5. Phosphine Organocatalysis vol.118, pp.20, 2018, https://doi.org/10.1021/acs.chemrev.8b00081
  6. Comparison of catalytic activity of hexamethyltriamino- and tri-n-butylphosphines in the Pudovik reaction vol.194, pp.4, 2013, https://doi.org/10.1080/10426507.2018.1542403
  7. Investigation of Hydrophosphorylation Reaction of Pentacoordinate Hydrospirophosphorane and Electron‐Deficient Alkenes Catalyzed by Organic Phosphine vol.10, pp.11, 2021, https://doi.org/10.1002/ajoc.202100536