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Abstract. In this paper, we introduce the notion of near pairwise compactness which

generalizes the notion of pairwise compactness.

1. Introduction

Singal and Mathur [10] introduced and studied the notion of near compactness
by generalizing the concept of compactness of a topological space. Later the notion
of near compactness studied and developed considerably by Carnahan [1], Singal
and Mathur [8], Herrington [3], Joseph [4] and others. The notion of near compact-
ness became an important meadow to topologists. Following these trends, Nandi [6]
introduced the notion of near compactness in bitopological spaces: A bitopological
space (X,P1,P2) is said to be ij-nearly compact if for each (Pi)open cover U of
X, there exists a finite subcollection V ⊂ U such that {(Pi)int((Pj)clV ) | V ∈ V }
covers X. X is said to be pairwise nearly compact if it is 12- and 21-nearly compact.
The notion of pairwise near compactness is defined considering only (Pi)open sets.
As such, this notion of pairwise near compactness cannot be a generalization of
pairwise compactness (Fletcher et al. [2]). In this paper, we introduce a generalized
notion of pairwise compactness and we call it nearly pairwise compact (Definition
2.7). It is also a generalization of near compactness.
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2. Preliminaries

Unless or otherwise mentioned, X stands for the bitopological space (X,P1,
P2). We recall the following definitions.

Definition 2.1. A collection U = {Uα | α ∈ A} is said to be pairwise open if for
each α ∈ A, Uα is (Pi)open for some i ∈ {1, 2} and for each i ∈ {1, 2}, U ∩Pi 6= ∅.
A pairwise open collection covering X is called a pairwise open cover (Fletcher et
al. [2]).

A collection F = {Fα | α ∈ A} of subsets of X is said to be pairwise closed
(Pahk and Choi [7]) if {X − Fα | α ∈ A} is pairwise open.

Definition 2.2([5]). In a bitopological space (X,P1,P2), the topology Pi is said
to be regular with respect to Pj , if for each x ∈ X and each (Pi)closed set A with
x /∈ A, there exist U ∈ Pi and V ∈ Pj such that x ∈ U,A ⊂ V and U ∩ V = ∅.
X is said to be pairwise regular if Pi is regular with respect to Pj for both i = 1
and i = 2.

Definition 2.3([11]). Let (X,P1,P2) and (Y,Q1,Q2) be two bitopological spaces
and Pi ×Qi be the product topology on X × Y of the topologies Pi and Qi on
X and Y respectively. Then the bitopological space (X × Y, P1×Q1,P2×Q2) is
called the product bitopological space of the spaces (X,P1,P2) and (Y,Q1,Q2).

Definition 2.4([9]). A set A ⊂ X is said to be (i, j)regularly open if A =
(Pi)int((Pj)clA).

A subset of X is said to be (i, j)regularly closed if its complement is
(i, j)regularly open. In other words, a set A ⊂ X is (i, j)regularly closed iff
A = (Pi)cl((Pj)intA).

Definition 2.5([9]). A bitopological space X is said to be pairwise semiregular iff
for each x ∈ X and each (Pi)open set U with x ∈ U, there exists a (Pi)open set
V such that x ∈ V ⊂ (Pi)int((Pj)clV ) ⊂ U.

Obviously, a pairwise regular space is pairwise semiregular.

Definition 2.6([9]). A bitopological space X is said to be pairwise almost regular
if for each x ∈ X and each (i, j)regularly closed set F with x /∈ F, there exist a
(Pi)open set U and a (Pj)open set V, j 6= i, i, j ∈ {1, 2}, such that x ∈ U, F ⊂ V
and U ∩ V = ∅.

Equivalently, X is pairwise almost regular iff for each x ∈ X and each
(i, j)regularly open set U with x ∈ U, there exists a (Pi)open set V such that
x ∈ V ⊂ (Pj)clV ⊂ U.

We introduce the following definitions.

Definition 2.7. A bitopological space X is said to be nearly pairwise compact if
for each pairwise open cover U of X, there exists a finite subcollection V ⊂ U
such that {(Pi)int((Pj)clV ) | V ∈ V ∩Pi, i ∈ {1, 2}} covers X.
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Obviously, a pairwise compact space is nearly pairwise compact. The following
examples shows that, the notion of pairwise near compactness and near pairwise
compactness are independent.

Example 2.1. Let b be a fixed real number. We define

P1 = {∅, R}
⋃{(

b− 1

n
,∞
)
| n ∈ N

}
∪ {[b,∞)},

P2 = {∅, R}
⋃{(

−∞, b− 1

n

)
| n ∈ N

}
∪ {(−∞, b), [b,∞)}⋃{

R−
[
b− 1

n
, b

)
| n ∈ N

}
.

(R,P1,P2) is pairwise nearly compact but it is not nearly pairwise compact.

Example 2.2(cf. [11], p. 142). Let

P1 = {∅, R}
⋃
{(−∞, n) | n ∈ Z},

P2 = {∅, R}
⋃
{(n,∞) | n ∈ Z}

where Z is the set of integers. The bitopological space (R,P1,P2) is not ij-nearly
compact for any i ∈ {1, 2}. Hence the space is not pairwise nearly compact. The
space is pairwise compact and hence it is also nearly pairwise compact.

Example 2.3. Let b be a fixed real number. We define

P1 = {∅, R}
⋃
{(−∞, b], (b,∞)},

P2 = {∅, R}
⋃
{(b,∞)}

⋃{(
b+

1

n
,∞
)
| n ∈ N

}
.

(R,P1,P2) is nearly pairwise compact but it is not pairwise compact.

Definition 2.8. A bitopological space X is said to be almost pairwise compact if
for each pairwise open cover U of X, there exists a finite subcollection V ⊂ U such
that {(Pj)clV | V ∈ V ∩Pi, i ∈ {1, 2}} covers X.

It readily follows from definitions, a nearly pairwise compact space is an almost
pairwise compact space.

Definition 2.9. A cover C of X is said to be a pairwise basic cover if there exist two
bases B1 and B2 of the topologies P1 and P2 respectively such that C ⊂ B1∪B2

and for each i ∈ {1, 2}, C ∩Bi 6= ∅.

Definition 2.10. A collection U (resp. F ) of subsets of X is said to be pairwise
regularly open (resp. pairwise regularly closed) if each member of U (resp. F ) is
(i, j)regularly open (resp. (i, j)regularly closed) for some i ∈ {1, 2} and contains at
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least one (i, j)regularly open (resp. (i, j)regularly closed) set for each i ∈ {1, 2}. U
(resp. F ) is said to be a pairwise regularly open (resp. pairwise regularly closed)
cover if it covers X.

Definition 2.11. A bifilter is a collection F of nonempty subsets of X with the
following properties:

(a) F ⊂P1 ∪P2 and F ∩Pi 6= ∅ for each i ∈ {1, 2}.
(b) If E,F ∈ F with E,F ∈Pi for some i ∈ {1, 2} then E ∩ F ∈ F .
(c) If G ∈ F and H ⊃ G with G,H ∈Pi for some i ∈ {1, 2} then H ∈ F .

Definition 2.12. A bifilter F on a bitopological space X is said to be maximal
provided

(a) for any bifilter G on X, G ⊂ F ,
(b) if G is a bifilter with F ⊂ G , then F = G .

Definition 2.13. A point p ∈ X is said to be a bicluster point of a bifilter F if
for each F ∈ F , p ∈ (Pi)clF whenever F is (Pi)open for some i ∈ {1, 2}.

Definition 2.14. A (Pi)open set containing a point p ∈ X is said to be a (Pi)open
neighbourhood (abbreviated as (Pi)open nbd) of p.

Definition 2.15. A point p is said to be a biconvergent point of a bifilter F if
each (Pi)open nbd of p is a member of F .

Throughout the paper, N denotes the set of natural numbers and R, the set
of real numbers. For a pairwise open (resp. closed) collection U (resp. F ) of
subsets of a bitopological space (X,P1,P2), we write U i (resp. F i) to denote
the collection of all (Pi)open (resp. (Pi)closed) sets in U (resp. F ). (T )intA
(resp. (T )clA) denotes the interior (resp. closure) of a set A in a topological space
(X,T ). Always i, j ∈ {1, 2} and whenever i, j appear together, j 6= i.

3. Results

We now establish the following theorems on nearly pairwise compact spaces.

Theorem 3.1. In a bitopological space X, the following statements are equivalent:

(a) X is nearly pairwise compact.
(b) Each pairwise basic cover U of X possesses a finite subcollection V ⊂ U

such that {(Pi)int((Pj)clV ) | V ∈ V ∩Pi, i ∈ {1, 2}} covers X.
(c) Each pairwise regularly open cover of X has a finite subcover.
(d) Each pairwise regularly closed collection of subsets of X with finite intersec-

tion property has nonempty intersection.
(e) Each pairwise closed collection F = {Fα | α ∈ B} of subsets of X with

the property that for any finite subcollection E ⊂ F ,
⋂
{(Pi)cl((Pj)intFα) |

Fα ∈ E , i ∈ {1, 2}} 6= ∅, has a nonempty intersection.
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Proof. (a)⇒ (b): Obvious.

(b) ⇒ (c): Let G = {Gα | α ∈ A} be a pairwise regularly open cover of
X and let Bi be a base of the topology Pi. For each Gα ∈ G with Gα ∈ Pi,
there exist Hiα = {Hλ | λ ∈ Λα, Hλ ∈ Bi} such that Gα =

⋃
{Hλ | Hλ ∈

Hiα}. Then U = {Hλ | λ ∈ Λα, α ∈ A} is a pairwise basic cover of X. So
by (b), we obtain a finite subcollection V = {Hλk

| k = 1, 2, . . . ,m} of U such
that {(Pi)int((Pj)clHλk

) | Hλk
∈ V ∩Pi, k = 1, 2, . . . ,m} covers X. For each

Hλk
∈ Pi, there exists a Gαk

∈ Pi, αk ∈ A such that Hλk
⊂ Gαk

which implies
(Pi)int((Pj)clHλk

) ⊂ (Pi)int((Pj)clGαk
) = Gαk

. Then {Gαk
| k = 1, 2, . . . ,m}

is a finite subcover of G .

(c)⇒ (d): We suppose that F = {Fα | α ∈ I} is a pairwise regularly closed col-
lection of subsets of X with finite intersection property i.e. for each n ∈ N,

⋂
{Fαk

|
k = 1, 2, . . . , n} 6= ∅. If possible, let

⋂
{Fα | α ∈ I} = ∅. Then {X − Fα | α ∈ I} is a

pairwise regularly open cover of X. So by (c), {X−Fα | α ∈ I} has a finite subcover
{X − Fαk

| k = 1, 2, . . . ,m} which in turn implies
⋂
{Fαk

| k = 1, 2, . . . ,m} = ∅.
This is a contradiction to our assumption. Thus we have

⋂
{Fα | α ∈ I} 6= ∅.

(d) ⇒ (e): We suppose that F = {Fα | α ∈ B} is a pairwise closed collection
of subsets of X and X − Fα ∈ Pi such that for any finite subcollection E of F ,⋂
{(Pi)cl((Pj)intFα) | Fα ∈ E , i ∈ {1, 2}} 6= ∅. Thus {(Pi)cl((Pj)intFα) | α ∈

B} is a pairwise regularly closed collection of subsets of X with finite intersection
property. So by (d), we have

⋂
{(Pi)cl((Pj)intFα) | α ∈ B} 6= ∅. Since Fα is

(Pi)closed, (Pi)cl((Pj)intFα) ⊂ Fα. Thus it follows that
⋂
{Fα | α ∈ B} 6= ∅.

(e) ⇒ (a): Suppose U = {Uα | α ∈ A} is a pairwise open cover of
X. If possible, suppose X is not nearly pairwise compact. So for any finite
subcollection {Uαk

| αk ∈ A, k = 1, 2, . . . ,m} of U , {(Pi)int((Pj)clUαk
) |

αk ∈ A, k = 1, 2, . . . ,m; Uαk
∈ Pi, i ∈ {1, 2}} is not a cover of X. Thus⋂

{X − (Pi)int((Pj)clUαk
) | αk ∈ A, k = 1, 2, . . . ,m; Uαk

∈ Pi, i ∈ {1, 2}} 6= ∅.
SinceX−(Pi)int((Pj)clUαk

) ⊂ (Pi)cl((Pj)int(X−Uαk
)),
⋂
{(Pi)cl((Pj)int(X−

Uαk
)) | αk ∈ A, k = 1, 2, . . . ,m; Uαk

∈Pi, i ∈ {1, 2}} 6= ∅. Thus {X −Uα | α ∈ A}
is a pairwise closed collection of subsets of X satisfying the properties of (e). Hence⋂
{X − Uα | α ∈ A} 6= ∅ which in turn implies

⋃
{Uα | α ∈ A} 6= X, which is a

contradiction. 2

Theorem 3.2. A pairwise semiregular space is nearly pairwise compact iff it is
pairwise compact.

Proof. Firstly, suppose X is pairwise semiregular and nearly pairwise compact.
Let U = {Uα | α ∈ A} be a pairwise open cover of X. For each x ∈ X,
there exists a Uα(x) ∈ U , α(x) ∈ A with x ∈ Uα(x). Suppose Uα(x) ∈ Pi.
So by pairwise semiregularity, there exists a (Pi)open set Gx such that x ∈
Gx ⊂ (Pi)int((Pj)clGx) ⊂ Uα(x). Here G = {(Pi)int((Pj)clGx) | x ∈ X} is
a pairwise regularly open cover of X. Using (c) of Theorem 3.1, we obtain a fi-
nite subcover {(Pi)int((Pj)clGxk

) | k = 1, 2, . . . , n} of G which in turn implies
{Uα(xk) | k = 1, 2, . . . , n} is a finite subcover of U . The converse part is obvious.2
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Theorem 3.3. A pairwise almost regular space is nearly pairwise compact if it is
almost pairwise compact.

Proof. Let U = {Uα | α ∈ A} be a pairwise regularly open cover of a pairwise
almost regular and almost pairwise compact space X. For each x ∈ X, we have
a Uα(x) ∈ U , α(x) ∈ A such that x ∈ Uα(x). Suppose Uα(x) ∈ Pi. Hence using
the notion of pairwise almost regularity, we obtain a (Pi)open set Gx such that
x ∈ Gx ⊂ (Pj)clGx ⊂ Uα(x). Obviously, G = {Gx | x ∈ X} is a pairwise open cover
of X. So there exists a finite subcollection {Gxk

| k = 1, 2, . . . , n} of G such that
{(Pj)clGxk

| k = 1, 2, . . . , n} covers X. Thus {Uα(xk) | k = 1, 2, . . . , n} is a finite
subcover of U for X. Hence X is nearly pairwise compact by (c) of Theorem 3.1.2

Lemma 3.1. Each (Pi)open cover U of a (j, i)regularly closed subset F of
a nearly pairwise compact space X has a finite subfamily V of U such that
{(Pi)int((Pj)clA) | A ∈ V } covers F.

Proof. The proof is straightforward and hence omitted. 2

Theorem 3.4. Every pairwise Hausdorff, nearly pairwise compact space is pairwise
almost regular.

Proof. Suppose X is a pairwise Hausdorff and nearly pairwise compact space. Let G
be a (i, j)regularly open set and x be a point of X with x ∈ G. For each y ∈ X−G,
we obtain a (Pi)open set Uy and a (Pj)open set Vy such that x ∈ Uy, y ∈ Vy
and Uy ∩ Vy = ∅. Then G = {Vy | y ∈ X − G} is a (Pj)open cover of the
(i, j)regularly closed set X − G. So by Lemma 3.1, G has a finite subcollection
H = {Vyk | k = 1, 2, . . . , n} with X−G ⊂

⋃
{(Pj)int((Pi)clVyk) | k = 1, 2, . . . , n}.

We write U =
⋂n
k=1 Uyk and V =

⋃n
k=1(Pj)int((Pi)clVyk). Here U is (Pi)open

with x ∈ U and V is (Pj)open with X − G ⊂ V and U ∩ V = ∅. Thus
(Pj)clU ⊂ X − V. Therefore it follows that x ∈ U ⊂ (Pj)clU ⊂ G. 2

Theorem 3.5. If the topological space (X,T ) is nearly compact and the bitopo-
logical space (Y,Q1,Q2) is nearly pairwise compact, then the product space (X ×
Y,T ×Q1,T ×Q2) is nearly pairwise compact.

Proof. Let U be a pairwise basic cover of X × Y . For each U ∈ U , we have U =
G×H, G ∈ T and H ∈ Qi, i ∈ {1, 2}. For each x ∈ X, the space {x}×Y is nearly
pairwise compact. Hence we get a finite number of elements Gkx×Hk

x , k = 1, 2, . . . , n
of U such that {x}×Y ⊂

⋃n
k=1(T ×Qi)int((T ×Qj)cl(Gkx×Hk

x )) where we assume
Hk
x ∈ Qi. We suppose that all the sets Gkx ×Hk

x intersects {x} × Y . Then x ∈ Gx
where Gx =

⋂n
k=1G

k
x ∈ T . The (T )open cover {Gx | x ∈ X} of X has a finite

subfamily Gx1
, Gx2

, . . . , Gxm
such that X =

⋃m
l=1(T )int((T )clGxl

). Hence the col-
lection {(T ×Qi)int((T ×Qj)cl(Gkxl

×Hk
xl

)) | k = 1, 2, . . . , n; l = 1, 2, . . . ,m} covers

X × Y and {Gkxl
×Hk

xl
| k = 1, 2, . . . , n; l = 1, 2, . . . ,m} is a finite subcollection of

U . 2

But the product of two nearly pairwise compact space need not be nearly pair-
wise compact. For, we consider Example 2.2. The space (R,P1,P2) is nearly
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pairwise compact, but the product space (R×R,P1×P1,P2×P2) is not nearly
pairwise compact.

Lemma 3.2. A bifilter F is maximal iff for some i ∈ {1, 2}, each (Pi)open set A
intersecting every member of F i belongs to F .

Proof. Firstly, suppose F is maximal. We write G = {G | G ⊃ A ∩ B for some
B ∈ F i and G is (Pi)open}

⋃
F j . Obviously, G is a bifilter with G ⊃ F and

A ∈ G . Since F is a maximal bifilter, we have G = F .
Conversely, suppose the condition holds. If F is not maximal, there exists a

bifilter H such that H ⊃ F . Let H ∈H and H be (Pi)open. Then by definition
of a bifilter, H intersects every member of H i and hence every member of F i.
Thus H ∈ F and hence we have H = F . 2

Lemma 3.3. A bicluster point of a bifilter is a biconvergent point if it is a maximal
bifilter.

Proof. Suppose the maximal bifilter F has a bicluster point p. Then for each
F ∈ F , p ∈ (Pi)clF whenever F is (Pi)open for some i ∈ {1, 2}. So each
(Pi)open nbd V of p intersects every F ∈ F i. Thus by Lemma 3.2, V ∈ F which
implies p is a biconvergent point of F . 2

Lemma 3.4. Each pairwise open collection of subsets of X with finite intersection
property is contained in a maximal bifilter.

Proof. The proof is straightforward and hence omitted. 2

Theorem 3.6. Let X be pairwise almost regular and each bifilter A in X has the
following property: For A,B ∈ A with A ∈ P1 and B ∈ P2, A ∩ B is nonempty
(Pi)open for each i ∈ {1, 2}. Then the following statements are equivalent:

(a) X is nearly pairwise compact.

(b) Each bifilter in X has a bicluster point.

(c) Each maximal bifilter in X has a biconvergent point.

Proof. (a) ⇒ (b): Let G = {Gα | α ∈ A} be a bifilter. For each α ∈ A, we
write Fα = (Pi)clGα if Gα ∈ Pi. Then F = {Fα | α ∈ A} is a pairwise closed
collection of subsets of X with following property: For any finite subcollection
E ⊂ F ,

⋂
{(Pi)cl((Pj)intF ) | F ∈ E } 6= ∅. Hence by Theorem 3.1(e),

⋂
{Fα | α ∈

A} 6= ∅. Thus there exists a p ∈ X with p ∈ Fα for each α ∈ A. So p is a bicluster
point of G .

(b) ⇒ (c): A maximal bifilter is of course a bifilter. So by (b), each maximal
bifilter has a bicluster point p. It then follows by Lemma 3.3, p is a biconvergent
point of the maximal bifilter.

(c) ⇒ (a): Let U be a pairwise regularly open cover of X. Suppose U has
no finite subcollection covering X. Again for each x ∈ X, there exists a Ux ∈ U
such that x ∈ Ux. Suppose Ux is (i, j)regularly open. Since X is pairwise almost
regular, we obtain a (Pi)open set Gx such that x ∈ Gx ⊂ (Pj)clGx ⊂ Ux. We
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note here that G = {Gx | x ∈ X} is a pairwise open cover of X. Also H =
{X − (Pj)clGx | Gx ∈ G } is a pairwise open collection of subsets of X with finite
intersection property. Now by Lemma 3.4, we obtain a maximal bifilter E which
contains H . So by (c), E has a biconvergent point p. A biconvergent point of a
maximal bifilter is also a bicluster point. So if E ∈ E is (Pi)open then p ∈ (Pi)clE
for each E ∈ E . Hence p ∈ (Pj)cl(X − (Pj)clGx) for each Gx ∈ G . Now we show
p /∈ Gx for any Gx ∈ G . We need only to prove the case when p /∈ X − (Pj)clGx
but p is a (Pj)limit point of X − (Pj)clGx. If possible, let p ∈ Gz for some
Gz ∈ G . For definiteness suppose, Gz is (Pi)open. Now each (Pj)open set A with
p ∈ A intersects each E ∈ E whenever E is (Pj)open. Again Gz intersects each
E ∈ E whenever E is (Pi)open. Therefore by Lemma 3.2, A,Gz ∈ E . So A∩Gz is
(Pi)open for each i ∈ {1, 2} and p ∈ A ∩Gz ⊂ Gz. Since p is a (Pj)limit point of
X − (Pj)clGz we have (A ∩Gz) ∩ (X − (Pj)clGz) 6= ∅ which is not possible since
Gz ∩ (X − (Pj)clGz) = ∅. Thus our anticipation p /∈ Gx for any Gx ∈ G is true.
This contradicts the fact that G is a pairwise open cover of X. So U must have a
finite subcover. Hence X is nearly pairwise compact. 2

Remark 3.1. Theorem 3.6 also holds good if the expression ‘X be pairwise almost
regular’ of the theorem is replaced by ‘X be a bitopological space with each (X,Pi)
being regular’.

We now give an example of a bitopological space which satisfies the conditions
of Theorem 3.6.

Example 3.1. For any a ∈ R, we define

P1 = {∅, R, (−∞, a), (−∞, a], (a,∞), R− {a}},
P2 = {∅, R, (−∞, a), (−∞, a]}.

The bitopological space (R,P1,P2) is pairwise almost regular. The possible bifil-
ters of this space are {(−∞, a], R}, {(−∞, a), (−∞, a], R − {a}, R}. Clearly, they
satisfy the conditions of Theorem 3.6.

It also follows, the bitopological space (R,P1,P2) is not pairwise regular.
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