On Nearly Pairwise Compact Spaces

Ajoy Mukharjee*
Department of Mathematics, St. Joseph's College, Darjeeling, W. Bengal - 734 104, India
e-mail: ajoyjee@yahoo.com
Manoj Kumar Bose
Department of Mathematics, University of North Bengal, Siliguri, W. Bengal - 734 013, India
e-mail: manojkumarbose@yahoo.com

Abstract. In this paper, we introduce the notion of near pairwise compactness which generalizes the notion of pairwise compactness.

1. Introduction

Singal and Mathur [10] introduced and studied the notion of near compactness by generalizing the concept of compactness of a topological space. Later the notion of near compactness studied and developed considerably by Carnahan [1], Singal and Mathur [8], Herrington [3], Joseph [4] and others. The notion of near compactness became an important meadow to topologists. Following these trends, Nandi [6] introduced the notion of near compactness in bitopological spaces: A bitopological space $\left(X, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$ is said to be $i j$-nearly compact if for each $\left(\mathscr{P}_{i}\right)$ open cover \mathscr{U} of X, there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\left\{\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} V\right) \mid V \in \mathscr{V}\right\}$ covers $X . X$ is said to be pairwise nearly compact if it is 12 - and 21-nearly compact. The notion of pairwise near compactness is defined considering only $\left(\mathscr{P}_{i}\right)$ open sets. As such, this notion of pairwise near compactness cannot be a generalization of pairwise compactness (Fletcher et al. [2]). In this paper, we introduce a generalized notion of pairwise compactness and we call it nearly pairwise compact (Definition 2.7). It is also a generalization of near compactness.

[^0]
2. Preliminaries

Unless or otherwise mentioned, X stands for the bitopological space $\left(X, \mathscr{P}_{1}\right.$, $\left.\mathscr{P}_{2}\right)$. We recall the following definitions.

Definition 2.1. A collection $\mathscr{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ is said to be pairwise open if for each $\alpha \in A, U_{\alpha}$ is $\left(\mathscr{P}_{i}\right)$ open for some $i \in\{1,2\}$ and for each $i \in\{1,2\}, \mathscr{U} \cap \mathscr{P}_{i} \neq \emptyset$. A pairwise open collection covering X is called a pairwise open cover (Fletcher et al. [2]).

A collection $\mathscr{F}=\left\{F_{\alpha} \mid \alpha \in A\right\}$ of subsets of X is said to be pairwise closed (Pahk and Choi [7]) if $\left\{X-F_{\alpha} \mid \alpha \in A\right\}$ is pairwise open.

Definition 2.2([5]). In a bitopological space $\left(X, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$, the topology \mathscr{P}_{i} is said to be regular with respect to \mathscr{P}_{j}, if for each $x \in X$ and each $\left(\mathscr{P}_{i}\right)$ closed set A with $x \notin A$, there exist $U \in \mathscr{P}_{i}$ and $V \in \mathscr{P}_{j}$ such that $x \in U, A \subset V$ and $U \cap V=\emptyset$. X is said to be pairwise regular if \mathscr{P}_{i} is regular with respect to \mathscr{P}_{j} for both $i=1$ and $i=2$.

Definition 2.3([11]). Let ($X, \mathscr{P}_{1}, \mathscr{P}_{2}$) and $\left(Y, \mathscr{Q}_{1}, \mathscr{Q}_{2}\right)$ be two bitopological spaces and $\mathscr{P}_{i} \times \mathscr{Q}_{i}$ be the product topology on $X \times Y$ of the topologies \mathscr{P}_{i} and \mathscr{Q}_{i} on X and Y respectively. Then the bitopological space $\left(X \times Y, \mathscr{P}_{1} \times \mathscr{Q}_{1}, \mathscr{P}_{2} \times \mathscr{Q}_{2}\right)$ is called the product bitopological space of the spaces $\left(X, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$ and $\left(Y, \mathscr{Q}_{1}, \mathscr{Q}_{2}\right)$.

Definition 2.4([9]). A set $A \subset X$ is said to be (i, j) regularly open if $A=$ $\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} A\right)$.

A subset of X is said to be (i, j) regularly closed if its complement is (i, j) regularly open. In other words, a set $A \subset X$ is (i, j) regularly closed iff $A=\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right) \operatorname{int} A\right)$.

Definition 2.5([9]). A bitopological space X is said to be pairwise semiregular iff for each $x \in X$ and each $\left(\mathscr{P}_{i}\right)$ open set U with $x \in U$, there exists a $\left(\mathscr{P}_{i}\right)$ open set V such that $x \in V \subset\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} V\right) \subset U$.

Obviously, a pairwise regular space is pairwise semiregular.
Definition 2.6([9]). A bitopological space X is said to be pairwise almost regular if for each $x \in X$ and each (i, j) regularly closed set F with $x \notin F$, there exist a $\left(\mathscr{P}_{i}\right)$ open set U and a $\left(\mathscr{P}_{j}\right)$ open set $V, j \neq i, i, j \in\{1,2\}$, such that $x \in U, F \subset V$ and $U \cap V=\emptyset$.

Equivalently, X is pairwise almost regular iff for each $x \in X$ and each (i, j) regularly open set U with $x \in U$, there exists a $\left(\mathscr{P}_{i}\right)$ open set V such that $x \in V \subset\left(\mathscr{P}_{j}\right) \mathrm{cl} V \subset U$.

We introduce the following definitions.
Definition 2.7. A bitopological space X is said to be nearly pairwise compact if for each pairwise open cover \mathscr{U} of X, there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\left\{\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} V\right) \mid V \in \mathscr{V} \cap \mathscr{P}_{i}, i \in\{1,2\}\right\}$ covers X.

Obviously, a pairwise compact space is nearly pairwise compact. The following examples shows that, the notion of pairwise near compactness and near pairwise compactness are independent.

Example 2.1. Let b be a fixed real number. We define

$$
\begin{aligned}
& \mathscr{P}_{1}=\{\emptyset, R\} \bigcup\left\{\left.\left(b-\frac{1}{n}, \infty\right) \right\rvert\, n \in N\right\} \cup\{[b, \infty)\} \\
& \mathscr{P}_{2}=\{\emptyset, R\} \bigcup\left\{\left.\left(-\infty, b-\frac{1}{n}\right) \right\rvert\, n \in N\right\} \cup\{(-\infty, b),[b, \infty)\} \\
& \bigcup\left\{\left.R-\left[b-\frac{1}{n}, b\right) \right\rvert\, n \in N\right\}
\end{aligned}
$$

$\left(R, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$ is pairwise nearly compact but it is not nearly pairwise compact.
Example 2.2(cf. [11], p. 142). Let

$$
\begin{aligned}
& \mathscr{P}_{1}=\{\emptyset, R\} \bigcup\{(-\infty, n) \mid n \in Z\} \\
& \mathscr{P}_{2}=\{\emptyset, R\} \bigcup\{(n, \infty) \mid n \in Z\}
\end{aligned}
$$

where Z is the set of integers. The bitopological space $\left(R, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$ is not $i j$-nearly compact for any $i \in\{1,2\}$. Hence the space is not pairwise nearly compact. The space is pairwise compact and hence it is also nearly pairwise compact.

Example 2.3. Let b be a fixed real number. We define

$$
\begin{aligned}
& \mathscr{P}_{1}=\{\emptyset, R\} \bigcup\{(-\infty, b],(b, \infty)\}, \\
& \mathscr{P}_{2}=\{\emptyset, R\} \bigcup\{(b, \infty)\} \bigcup\left\{\left.\left(b+\frac{1}{n}, \infty\right) \right\rvert\, n \in N\right\} .
\end{aligned}
$$

($R, \mathscr{P}_{1}, \mathscr{P}_{2}$) is nearly pairwise compact but it is not pairwise compact.
Definition 2.8. A bitopological space X is said to be almost pairwise compact if for each pairwise open cover \mathscr{U} of X, there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\left\{\left(\mathscr{P}_{j}\right) \mathrm{cl} V \mid V \in \mathscr{V} \cap \mathscr{P}_{i}, i \in\{1,2\}\right\}$ covers X.

It readily follows from definitions, a nearly pairwise compact space is an almost pairwise compact space.

Definition 2.9. A cover \mathscr{C} of X is said to be a pairwise basic cover if there exist two bases \mathscr{B}_{1} and \mathscr{B}_{2} of the topologies \mathscr{P}_{1} and \mathscr{P}_{2} respectively such that $\mathscr{C} \subset \mathscr{B}_{1} \cup \mathscr{B}_{2}$ and for each $i \in\{1,2\}, \mathscr{C} \cap \mathscr{B}_{i} \neq \emptyset$.

Definition 2.10. A collection \mathscr{U} (resp. \mathscr{F}) of subsets of X is said to be pairwise regularly open (resp. pairwise regularly closed) if each member of \mathscr{U} (resp. \mathscr{F}) is (i, j) regularly open (resp. (i, j)regularly closed) for some $i \in\{1,2\}$ and contains at
least one (i, j) regularly open (resp. (i, j) regularly closed) set for each $i \in\{1,2\}$. \mathscr{U} (resp. \mathscr{F}) is said to be a pairwise regularly open (resp. pairwise regularly closed) cover if it covers X.

Definition 2.11. A bifilter is a collection \mathscr{F} of nonempty subsets of X with the following properties:
(a) $\mathscr{F} \subset \mathscr{P}_{1} \cup \mathscr{P}_{2}$ and $\mathscr{F} \cap \mathscr{P}_{i} \neq \emptyset$ for each $i \in\{1,2\}$.
(b) If $E, F \in \mathscr{F}$ with $E, F \in \mathscr{P}_{i}$ for some $i \in\{1,2\}$ then $E \cap F \in \mathscr{F}$.
(c) If $G \in \mathscr{F}$ and $H \supset G$ with $G, H \in \mathscr{P}_{i}$ for some $i \in\{1,2\}$ then $H \in \mathscr{F}$.

Definition 2.12. A bifilter \mathscr{F} on a bitopological space X is said to be maximal provided
(a) for any bifilter \mathscr{G} on $X, \mathscr{G} \subset \mathscr{F}$,
(b) if \mathscr{G} is a bifilter with $\mathscr{F} \subset \mathscr{G}$, then $\mathscr{F}=\mathscr{G}$.

Definition 2.13. A point $p \in X$ is said to be a bicluster point of a bifilter \mathscr{F} if for each $F \in \mathscr{F}, p \in\left(\mathscr{P}_{i}\right) \mathrm{cl} F$ whenever F is $\left(\mathscr{P}_{i}\right)$ open for some $i \in\{1,2\}$.

Definition 2.14. A $\left(\mathscr{P}_{i}\right)$ open set containing a point $p \in X$ is said to be a $\left(\mathscr{P}_{i}\right)$ open neighbourhood (abbreviated as (\mathscr{P}_{i})open nbd) of p.

Definition 2.15. A point p is said to be a biconvergent point of a bifilter \mathscr{F} if each $\left(\mathscr{P}_{i}\right)$ open nbd of p is a member of \mathscr{F}.

Throughout the paper, N denotes the set of natural numbers and R, the set of real numbers. For a pairwise open (resp. closed) collection \mathscr{U} (resp. \mathscr{F}) of subsets of a bitopological space $\left(X, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$, we write \mathscr{U}^{i} (resp. \mathscr{F}^{i}) to denote the collection of all $\left(\mathscr{P}_{i}\right)$ open (resp. $\left(\mathscr{P}_{i}\right)$ closed) sets in \mathscr{U} (resp. $\left.\mathscr{F}\right)$. ($\left.\mathscr{T}\right) \operatorname{int} A$ (resp. $(\mathscr{T}) \operatorname{cl} A$) denotes the interior (resp. closure) of a set A in a topological space (X, \mathscr{T}). Always $i, j \in\{1,2\}$ and whenever i, j appear together, $j \neq i$.

3. Results

We now establish the following theorems on nearly pairwise compact spaces.
Theorem 3.1. In a bitopological space X, the following statements are equivalent:
(a) X is nearly pairwise compact.
(b) Each pairwise basic cover \mathscr{U} of X possesses a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\left\{\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right)\right.\right.$ clV $\left.) \mid V \in \mathscr{V} \cap \mathscr{P}_{i}, i \in\{1,2\}\right\}$ covers X.
(c) Each pairwise regularly open cover of X has a finite subcover.
(d) Each pairwise regularly closed collection of subsets of X with finite intersection property has nonempty intersection.
(e) Each pairwise closed collection $\mathscr{F}=\left\{F_{\alpha} \mid \alpha \in B\right\}$ of subsets of X with the property that for any finite subcollection $\mathscr{E} \subset \mathscr{F}, \bigcap\left\{\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right)\right.\right.$ int $\left.F_{\alpha}\right) \mid$ $\left.F_{\alpha} \in \mathscr{E}, i \in\{1,2\}\right\} \neq \emptyset$, has a nonempty intersection.

Proof. $(a) \Rightarrow(b)$: Obvious.
(b) $\Rightarrow(c)$: Let $\mathscr{G}=\left\{G_{\alpha} \mid \alpha \in A\right\}$ be a pairwise regularly open cover of X and let \mathscr{B}_{i} be a base of the topology \mathscr{P}_{i}. For each $G_{\alpha} \in \mathscr{G}$ with $G_{\alpha} \in \mathscr{P}_{i}$, there exist $\mathscr{H}_{i \alpha}=\left\{H_{\lambda} \mid \lambda \in \Lambda_{\alpha}, H_{\lambda} \in \mathscr{B}_{i}\right\}$ such that $G_{\alpha}=\bigcup\left\{H_{\lambda} \mid H_{\lambda} \in\right.$ $\left.\mathscr{H}_{i \alpha}\right\}$. Then $\mathscr{U}=\left\{H_{\lambda} \mid \lambda \in \Lambda_{\alpha}, \alpha \in A\right\}$ is a pairwise basic cover of X. So by (b), we obtain a finite subcollection $\mathscr{V}=\left\{H_{\lambda_{k}} \mid k=1,2, \ldots, m\right\}$ of \mathscr{U} such that $\left\{\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} H_{\lambda_{k}}\right) \mid H_{\lambda_{k}} \in \mathscr{V} \cap \mathscr{P}_{i}, k=1,2, \ldots, m\right\}$ covers X. For each $H_{\lambda_{k}} \in \mathscr{P}_{i}$, there exists a $G_{\alpha_{k}} \in \mathscr{P}_{i}, \alpha_{k} \in A$ such that $H_{\lambda_{k}} \subset G_{\alpha_{k}}$ which implies $\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} H_{\lambda_{k}}\right) \subset\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} G_{\alpha_{k}}\right)=G_{\alpha_{k}}$. Then $\left\{G_{\alpha_{k}} \mid k=1,2, \ldots, m\right\}$ is a finite subcover of \mathscr{G}.
$(c) \Rightarrow(d)$: We suppose that $\mathscr{F}=\left\{F_{\alpha} \mid \alpha \in I\right\}$ is a pairwise regularly closed collection of subsets of X with finite intersection property i.e. for each $n \in N, \bigcap\left\{F_{\alpha_{k}} \mid\right.$ $k=1,2, \ldots, n\} \neq \emptyset$. If possible, let $\bigcap\left\{F_{\alpha} \mid \alpha \in I\right\}=\emptyset$. Then $\left\{X-F_{\alpha} \mid \alpha \in I\right\}$ is a pairwise regularly open cover of X. So by $(c),\left\{X-F_{\alpha} \mid \alpha \in I\right\}$ has a finite subcover $\left\{X-F_{\alpha_{k}} \mid k=1,2, \ldots, m\right\}$ which in turn implies $\bigcap\left\{F_{\alpha_{k}} \mid k=1,2, \ldots, m\right\}=\emptyset$. This is a contradiction to our assumption. Thus we have $\bigcap\left\{F_{\alpha} \mid \alpha \in I\right\} \neq \emptyset$.
$(d) \Rightarrow(e)$: We suppose that $\mathscr{F}=\left\{F_{\alpha} \mid \alpha \in B\right\}$ is a pairwise closed collection of subsets of X and $X-F_{\alpha} \in \mathscr{P}_{i}$ such that for any finite subcollection \mathscr{E} of \mathscr{F}, $\bigcap\left\{\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right) \operatorname{int} F_{\alpha}\right) \mid F_{\alpha} \in \mathscr{E}, i \in\{1,2\}\right\} \neq \emptyset$. Thus $\left\{\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right) \operatorname{int} F_{\alpha}\right) \mid \alpha \in\right.$ $B\}$ is a pairwise regularly closed collection of subsets of X with finite intersection property. So by (d), we have $\bigcap\left\{\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right) \operatorname{int} F_{\alpha}\right) \mid \alpha \in B\right\} \neq \emptyset$. Since F_{α} is $\left(\mathscr{P}_{i}\right)$ closed, $\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right) \operatorname{int} F_{\alpha}\right) \subset F_{\alpha}$. Thus it follows that $\bigcap\left\{F_{\alpha} \mid \alpha \in B\right\} \neq \emptyset$.
$(e) \Rightarrow(a)$: Suppose $\mathscr{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ is a pairwise open cover of X. If possible, suppose X is not nearly pairwise compact. So for any finite subcollection $\left\{U_{\alpha_{k}} \mid \alpha_{k} \in A, k=1,2, \ldots, m\right\}$ of $\mathscr{U}, \quad\left\{\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} U_{\alpha_{k}}\right) \mid\right.$ $\left.\alpha_{k} \in A, k=1,2, \ldots, m ; U_{\alpha_{k}} \in \mathscr{P}_{i}, i \in\{1,2\}\right\}$ is not a cover of X. Thus $\bigcap\left\{X-\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} U_{\alpha_{k}}\right) \mid \alpha_{k} \in A, k=1,2, \ldots, m ; U_{\alpha_{k}} \in \mathscr{P}_{i}, i \in\{1,2\}\right\} \neq \emptyset$. Since $X-\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \operatorname{cl} U_{\alpha_{k}}\right) \subset\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right) \operatorname{int}\left(X-U_{\alpha_{k}}\right)\right), \bigcap\left\{\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right) \operatorname{int}(X-\right.\right.$ $\left.\left.\left.U_{\alpha_{k}}\right)\right) \mid \alpha_{k} \in A, k=1,2, \ldots, m ; U_{\alpha_{k}} \in \mathscr{P}_{i}, i \in\{1,2\}\right\} \neq \emptyset$. Thus $\left\{X-U_{\alpha} \mid \alpha \in A\right\}$ is a pairwise closed collection of subsets of X satisfying the properties of (e). Hence $\bigcap\left\{X-U_{\alpha} \mid \alpha \in A\right\} \neq \emptyset$ which in turn implies $\bigcup\left\{U_{\alpha} \mid \alpha \in A\right\} \neq X$, which is a contradiction.

Theorem 3.2. A pairwise semiregular space is nearly pairwise compact iff it is pairwise compact.
Proof. Firstly, suppose X is pairwise semiregular and nearly pairwise compact. Let $\mathscr{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ be a pairwise open cover of X. For each $x \in X$, there exists a $U_{\alpha(x)} \in \mathscr{U}, \alpha(x) \in A$ with $x \in U_{\alpha(x)}$. Suppose $U_{\alpha(x)} \in \mathscr{P}_{i}$. So by pairwise semiregularity, there exists a $\left(\mathscr{P}_{i}\right)$ open set G_{x} such that $x \in$ $G_{x} \subset\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{x}\right) \subset U_{\alpha(x)}$. Here $\mathscr{G}=\left\{\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{x}\right) \mid x \in X\right\}$ is a pairwise regularly open cover of X. Using (c) of Theorem 3.1, we obtain a finite subcover $\left\{\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right) \mathrm{cl} G_{x_{k}}\right) \mid k=1,2, \ldots, n\right\}$ of \mathscr{G} which in turn implies $\left\{U_{\alpha\left(x_{k}\right)} \mid k=1,2, \ldots, n\right\}$ is a finite subcover of \mathscr{U}. The converse part is obvious.

Theorem 3.3. A pairwise almost regular space is nearly pairwise compact if it is almost pairwise compact.
Proof. Let $\mathscr{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ be a pairwise regularly open cover of a pairwise almost regular and almost pairwise compact space X. For each $x \in X$, we have a $U_{\alpha(x)} \in \mathscr{U}, \alpha(x) \in A$ such that $x \in U_{\alpha(x)}$. Suppose $U_{\alpha(x)} \in \mathscr{P}_{i}$. Hence using the notion of pairwise almost regularity, we obtain a $\left(\mathscr{P}_{i}\right)$ open set G_{x} such that $x \in G_{x} \subset\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{x} \subset U_{\alpha(x)}$. Obviously, $\mathscr{G}=\left\{G_{x} \mid x \in X\right\}$ is a pairwise open cover of X. So there exists a finite subcollection $\left\{G_{x_{k}} \mid k=1,2, \ldots, n\right\}$ of \mathscr{G} such that $\left\{\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{x_{k}} \mid k=1,2, \ldots, n\right\}$ covers X. Thus $\left\{U_{\alpha\left(x_{k}\right)} \mid k=1,2, \ldots, n\right\}$ is a finite subcover of \mathscr{U} for X. Hence X is nearly pairwise compact by (c) of Theorem 3.1.

Lemma 3.1. Each $\left(\mathscr{P}_{i}\right)$ open cover \mathscr{U} of $a(j, i)$ regularly closed subset F of a nearly pairwise compact space X has a finite subfamily \mathscr{V} of \mathscr{U} such that $\left\{\left(\mathscr{P}_{i}\right) \operatorname{int}\left(\left(\mathscr{P}_{j}\right)\right.\right.$ cl $\left.\left.A\right) \mid A \in \mathscr{V}\right\}$ covers F.
Proof. The proof is straightforward and hence omitted.
Theorem 3.4. Every pairwise Hausdorff, nearly pairwise compact space is pairwise almost regular.
Proof. Suppose X is a pairwise Hausdorff and nearly pairwise compact space. Let G be a (i, j) regularly open set and x be a point of X with $x \in G$. For each $y \in X-G$, we obtain a $\left(\mathscr{P}_{i}\right)$ open set U_{y} and a $\left(\mathscr{P}_{j}\right)$ open set V_{y} such that $x \in U_{y}, y \in V_{y}$ and $U_{y} \cap V_{y}=\emptyset$. Then $\mathscr{G}=\left\{V_{y} \mid y \in X-G\right\}$ is a $\left(\mathscr{P}_{j}\right)$ open cover of the (i, j) regularly closed set $X-G$. So by Lemma 3.1, \mathscr{G} has a finite subcollection $\mathscr{H}=\left\{V_{y_{k}} \mid k=1,2, \ldots, n\right\}$ with $X-G \subset \bigcup\left\{\left(\mathscr{P}_{j}\right) \operatorname{int}\left(\left(\mathscr{P}_{i}\right) \operatorname{cl} V_{y_{k}}\right) \mid k=1,2, \ldots, n\right\}$. We write $U=\bigcap_{k=1}^{n} U_{y_{k}}$ and $V=\bigcup_{k=1}^{n}\left(\mathscr{P}_{j}\right) \operatorname{int}\left(\left(\mathscr{P}_{i}\right) \operatorname{cl} V_{y_{k}}\right)$. Here U is $\left(\mathscr{P}_{i}\right)$ open with $x \in U$ and V is $\left(\mathscr{P}_{j}\right)$ open with $X-G \subset V$ and $U \cap V=\emptyset$. Thus $\left(\mathscr{P}_{j}\right) \mathrm{cl} U \subset X-V$. Therefore it follows that $x \in U \subset\left(\mathscr{P}_{j}\right) \mathrm{cl} U \subset G$.

Theorem 3.5. If the topological space (X, \mathscr{T}) is nearly compact and the bitopological space $\left(Y, \mathscr{Q}_{1}, \mathscr{Q}_{2}\right)$ is nearly pairwise compact, then the product space $(X \times$ $\left.Y, \mathscr{T} \times \mathscr{Q}_{1}, \mathscr{T} \times \mathscr{Q}_{2}\right)$ is nearly pairwise compact.
Proof. Let \mathscr{U} be a pairwise basic cover of $X \times Y$. For each $U \in \mathscr{U}$, we have $U=$ $G \times H, G \in \mathscr{T}$ and $H \in \mathscr{Q}_{i}, i \in\{1,2\}$. For each $x \in X$, the space $\{x\} \times Y$ is nearly pairwise compact. Hence we get a finite number of elements $G_{x}^{k} \times H_{x}^{k}, k=1,2, \ldots, n$ of \mathscr{U} such that $\{x\} \times Y \subset \bigcup_{k=1}^{n}\left(\mathscr{T} \times \mathscr{Q}_{i}\right) \operatorname{int}\left(\left(\mathscr{T} \times \mathscr{Q}_{j}\right) \operatorname{cl}\left(G_{x}^{k} \times H_{x}^{k}\right)\right)$ where we assume $H_{x}^{k} \in \mathscr{Q}_{i}$. We suppose that all the sets $G_{x}^{k} \times H_{x}^{k}$ intersects $\{x\} \times Y$. Then $x \in G_{x}$ where $G_{x}=\bigcap_{k=1}^{n} G_{x}^{k} \in \mathscr{T}$. The (\mathscr{T}) open cover $\left\{G_{x} \mid x \in X\right\}$ of X has a finite subfamily $G_{x_{1}}, G_{x_{2}}, \ldots, G_{x_{m}}$ such that $X=\bigcup_{l=1}^{m}(\mathscr{T}) \operatorname{int}\left((\mathscr{T}) \operatorname{cl} G_{x_{l}}\right)$. Hence the collection $\left\{\left(\mathscr{T} \times \mathscr{Q}_{i}\right) \operatorname{int}\left(\left(\mathscr{T} \times \mathscr{Q}_{j}\right) \operatorname{cl}\left(G_{x_{l}}^{k} \times H_{x_{l}}^{k}\right)\right) \mid k=1,2, \ldots, n ; l=1,2, \ldots, m\right\}$ covers $X \times Y$ and $\left\{G_{x_{l}}^{k} \times H_{x_{l}}^{k} \mid k=1,2, \ldots, n ; l=1,2, \ldots, m\right\}$ is a finite subcollection of \mathscr{U}.

But the product of two nearly pairwise compact space need not be nearly pairwise compact. For, we consider Example 2.2. The space $\left(R, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$ is nearly
pairwise compact, but the product space $\left(R \times R, \mathscr{P}_{1} \times \mathscr{P}_{1}, \mathscr{P}_{2} \times \mathscr{P}_{2}\right)$ is not nearly pairwise compact.

Lemma 3.2. A bifilter \mathscr{F} is maximal iff for some $i \in\{1,2\}$, each $\left(\mathscr{P}_{i}\right)$ open set A intersecting every member of \mathscr{F}^{i} belongs to \mathscr{F}.
Proof. Firstly, suppose \mathscr{F} is maximal. We write $\mathscr{G}=\{G \mid G \supset A \cap B$ for some $B \in \mathscr{F}^{i}$ and G is $\left(\mathscr{P}_{i}\right)$ open $\} \bigcup \mathscr{F}^{j}$. Obviously, \mathscr{G} is a bifilter with $\mathscr{G} \supset \mathscr{F}$ and $A \in \mathscr{G}$. Since \mathscr{F} is a maximal bifilter, we have $\mathscr{G}=\mathscr{F}$.

Conversely, suppose the condition holds. If \mathscr{F} is not maximal, there exists a bifilter \mathscr{H} such that $\mathscr{H} \supset \mathscr{F}$. Let $H \in \mathscr{H}$ and H be $\left(\mathscr{P}_{i}\right)$ open. Then by definition of a bifilter, H intersects every member of \mathscr{H}^{i} and hence every member of \mathscr{F}^{i}. Thus $H \in \mathscr{F}$ and hence we have $\mathscr{H}=\mathscr{F}$.

Lemma 3.3. A bicluster point of a bifilter is a biconvergent point if it is a maximal bifilter.
Proof. Suppose the maximal bifilter \mathscr{F} has a bicluster point p. Then for each $F \in \mathscr{F}, p \in\left(\mathscr{P}_{i}\right) \mathrm{cl} F$ whenever F is $\left(\mathscr{P}_{i}\right)$ open for some $i \in\{1,2\}$. So each $\left(\mathscr{P}_{i}\right)$ open nbd V of p intersects every $F \in \mathscr{F}^{i}$. Thus by Lemma $3.2, V \in \mathscr{F}$ which implies p is a biconvergent point of \mathscr{F}.

Lemma 3.4. Each pairwise open collection of subsets of X with finite intersection property is contained in a maximal bifilter.
Proof. The proof is straightforward and hence omitted.
Theorem 3.6. Let X be pairwise almost regular and each bifilter \mathscr{A} in X has the following property: For $A, B \in \mathscr{A}$ with $A \in \mathscr{P}_{1}$ and $B \in \mathscr{P}_{2}, A \cap B$ is nonempty $\left(\mathscr{P}_{i}\right)$ open for each $i \in\{1,2\}$. Then the following statements are equivalent:
(a) X is nearly pairwise compact.
(b) Each bifilter in X has a bicluster point.
(c) Each maximal bifilter in X has a biconvergent point.

Proof. $(a) \Rightarrow(b)$: Let $\mathscr{G}=\left\{G_{\alpha} \mid \alpha \in A\right\}$ be a bifilter. For each $\alpha \in A$, we write $F_{\alpha}=\left(\mathscr{P}_{i}\right) \operatorname{cl} G_{\alpha}$ if $G_{\alpha} \in \mathscr{P}_{i}$. Then $\mathscr{F}=\left\{F_{\alpha} \mid \alpha \in A\right\}$ is a pairwise closed collection of subsets of X with following property: For any finite subcollection $\mathscr{E} \subset \mathscr{F}, \bigcap\left\{\left(\mathscr{P}_{i}\right) \operatorname{cl}\left(\left(\mathscr{P}_{j}\right) \operatorname{int} F\right) \mid F \in \mathscr{E}\right\} \neq \emptyset$. Hence by Theorem 3.1 $(e), \bigcap\left\{F_{\alpha} \mid \alpha \in\right.$ $A\} \neq \emptyset$. Thus there exists a $p \in X$ with $p \in F_{\alpha}$ for each $\alpha \in A$. So p is a bicluster point of \mathscr{G}.
$(b) \Rightarrow(c)$: A maximal bifilter is of course a bifilter. So by (b), each maximal bifilter has a bicluster point p. It then follows by Lemma 3.3, p is a biconvergent point of the maximal bifilter.
$(c) \Rightarrow(a)$: Let \mathscr{U} be a pairwise regularly open cover of X. Suppose \mathscr{U} has no finite subcollection covering X. Again for each $x \in X$, there exists a $U_{x} \in \mathscr{U}$ such that $x \in U_{x}$. Suppose U_{x} is (i, j) regularly open. Since X is pairwise almost regular, we obtain a $\left(\mathscr{P}_{i}\right)$ open set G_{x} such that $x \in G_{x} \subset\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{x} \subset U_{x}$. We
note here that $\mathscr{G}=\left\{G_{x} \mid x \in X\right\}$ is a pairwise open cover of X. Also $\mathscr{H}=$ $\left\{X-\left(\mathscr{P}_{j}\right) \mathrm{cl} G_{x} \mid G_{x} \in \mathscr{G}\right\}$ is a pairwise open collection of subsets of X with finite intersection property. Now by Lemma 3.4, we obtain a maximal bifilter \mathscr{E} which contains \mathscr{H}. So by $(c), \mathscr{E}$ has a biconvergent point p. A biconvergent point of a maximal bifilter is also a bicluster point. So if $E \in \mathscr{E}$ is $\left(\mathscr{P}_{i}\right)$ open then $p \in\left(\mathscr{P}_{i}\right) \mathrm{cl} E$ for each $E \in \mathscr{E}$. Hence $p \in\left(\mathscr{P}_{j}\right) \operatorname{cl}\left(X-\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{x}\right)$ for each $G_{x} \in \mathscr{G}$. Now we show $p \notin G_{x}$ for any $G_{x} \in \mathscr{G}$. We need only to prove the case when $p \notin X-\left(\mathscr{P}_{j}\right) \mathrm{cl} G_{x}$ but p is a $\left(\mathscr{P}_{j}\right)$ limit point of $X-\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{x}$. If possible, let $p \in G_{z}$ for some $G_{z} \in \mathscr{G}$. For definiteness suppose, G_{z} is $\left(\mathscr{P}_{i}\right)$ open. Now each $\left(\mathscr{P}_{j}\right)$ open set A with $p \in A$ intersects each $E \in \mathscr{E}$ whenever E is $\left(\mathscr{P}_{j}\right)$ open. Again G_{z} intersects each $E \in \mathscr{E}$ whenever E is $\left(\mathscr{P}_{i}\right)$ open. Therefore by Lemma $3.2, A, G_{z} \in \mathscr{E}$. So $A \cap G_{z}$ is $\left(\mathscr{P}_{i}\right)$ open for each $i \in\{1,2\}$ and $p \in A \cap G_{z} \subset G_{z}$. Since p is a $\left(\mathscr{P}_{j}\right)$ limit point of $X-\left(\mathscr{P}_{j}\right) \mathrm{cl} G_{z}$ we have $\left(A \cap G_{z}\right) \cap\left(X-\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{z}\right) \neq \emptyset$ which is not possible since $G_{z} \cap\left(X-\left(\mathscr{P}_{j}\right) \operatorname{cl} G_{z}\right)=\emptyset$. Thus our anticipation $p \notin G_{x}$ for any $G_{x} \in \mathscr{G}$ is true. This contradicts the fact that \mathscr{G} is a pairwise open cover of X. So \mathscr{U} must have a finite subcover. Hence X is nearly pairwise compact.

Remark 3.1. Theorem 3.6 also holds good if the expression ' X be pairwise almost regular' of the theorem is replaced by ' X be a bitopological space with each (X, \mathscr{P}_{i}) being regular'.

We now give an example of a bitopological space which satisfies the conditions of Theorem 3.6.

Example 3.1. For any $a \in R$, we define

$$
\begin{aligned}
& \mathscr{P}_{1}=\{\emptyset, R,(-\infty, a),(-\infty, a],(a, \infty), R-\{a\}\} \\
& \mathscr{P}_{2}=\{\emptyset, R,(-\infty, a),(-\infty, a]\}
\end{aligned}
$$

The bitopological space $\left(R, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$ is pairwise almost regular. The possible bifilters of this space are $\{(-\infty, a], R\},\{(-\infty, a),(-\infty, a], R-\{a\}, R\}$. Clearly, they satisfy the conditions of Theorem 3.6.

It also follows, the bitopological space $\left(R, \mathscr{P}_{1}, \mathscr{P}_{2}\right)$ is not pairwise regular.

Acknowledgements The first author is highly thankful to Prof. T. Noiri, Japan for helping us on supplying reprints/photocopies of some articles on near compactness and locally near compactness. The authors would like to thank the referees for valuable suggestions for improvement of the paper.

References

[1] D. Carnahan, Locally nearly-compact spaces, Boll. Unione Mat. Ital. (4), 6(1972), 146-153.
[2] P. Fletcher, H. B. Hoyle III and C. W. Patty, The comparison of topologies, Duke Math. J., 36(1969), 325-331.
[3] L. L. Herrington, Properties of nearly-compact spaces, Proc. Amer. Math. Soc., 45(1974), 431-436.
[4] J. E. Joseph, Characterizations of nearly-compact spaces, Boll. Unione Mat. Ital. (5), 13-B(1976), 311-321.
[5] J. C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc. (3), 13(1963), 71-89.
[6] J. N. Nandi, Bitopological near compactness I: Characterizations, Bull. Calcutta Math. Soc., 85(1993), 337-344.
[7] D. H. Pahk and B. D. Choi, Notes on pairwise compactness, Kyungpook Math. J., 11(1971), 45-52.
[8] M. K. Singal and A. Mathur, On nearly compact spaces - II, Boll. Unione Mat. Ital. (4), $\mathbf{9}$ (1974), 670-678.
[9] M. K. Singal and A. R. Singal, Some more separation axioms in bitopological spaces, Ann. Soc. Sci. Brux., 84(1970), 207-230.
[10] M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Unione Mat. Ital. (4), 6(1969), 702-710.
[11] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Indag. Math., 33(1971), 135-145.

[^0]: * Corresponding Author.

 Received March 30, 2011; revised October 5, 2011; accepted July 24, 2012.
 2010 Mathematics Subject Classification: 54D30, 54E55.
 Key words and phrases: (i, j) regularly open, (i, j) regularly closed, pairwise semiregular, pairwise almost regular, nearly pairwise compact, almost pairwise compact, bifilter, bicluster point, biconvergent point.

