KYUNGPOOK Math. J. 53(2013), 125-133 http://dx.doi.org/10.5666/KMJ.2013.53.1.125

On Nearly Pairwise Compact Spaces

AJOY MUKHARJEE* Department of Mathematics, St. Joseph's College, Darjeeling, W. Bengal - 734 104, India e-mail: ajoyjee@yahoo.com

MANOJ KUMAR BOSE Department of Mathematics, University of North Bengal, Siliguri, W. Bengal - 734 013, India e-mail: manojkumarbose@yahoo.com

ABSTRACT. In this paper, we introduce the notion of near pairwise compactness which generalizes the notion of pairwise compactness.

1. Introduction

Singal and Mathur [10] introduced and studied the notion of near compactness by generalizing the concept of compactness of a topological space. Later the notion of near compactness studied and developed considerably by Carnahan [1], Singal and Mathur [8], Herrington [3], Joseph [4] and others. The notion of near compactness became an important meadow to topologists. Following these trends, Nandi [6] introduced the notion of near compactness in bitopological spaces: A bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$ is said to be *ij*-nearly compact if for each (\mathscr{P}_i) open cover \mathscr{U} of X, there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\{(\mathscr{P}_i) \operatorname{int}((\mathscr{P}_j) \operatorname{clV}) \mid V \in \mathscr{V}\}$ covers X. X is said to be pairwise nearly compact if it is 12- and 21-nearly compact. The notion of pairwise near compactness is defined considering only (\mathscr{P}_i) open sets. As such, this notion of pairwise near compactness cannot be a generalization of pairwise compactness (Fletcher et al. [2]). In this paper, we introduce a generalized notion of pairwise compactness and we call it nearly pairwise compact (Definition 2.7). It is also a generalization of near compactness.

Received March 30, 2011; revised October 5, 2011; accepted July 24, 2012.

2010 Mathematics Subject Classification: $54\mathrm{D}30,\,54\mathrm{E}55.$

^{*} Corresponding Author.

Key words and phrases: (i, j) regularly open, (i, j) regularly closed, pairwise semiregular, pairwise almost regular, nearly pairwise compact, almost pairwise compact, bifilter, bicluster point, biconvergent point.

2. Preliminaries

Unless or otherwise mentioned, X stands for the bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$. We recall the following definitions.

Definition 2.1. A collection $\mathscr{U} = \{U_{\alpha} \mid \alpha \in A\}$ is said to be pairwise open if for each $\alpha \in A$, U_{α} is (\mathscr{P}_i) open for some $i \in \{1, 2\}$ and for each $i \in \{1, 2\}$, $\mathscr{U} \cap \mathscr{P}_i \neq \emptyset$. A pairwise open collection covering X is called a pairwise open cover (Fletcher et al. [2]).

A collection $\mathscr{F} = \{F_{\alpha} \mid \alpha \in A\}$ of subsets of X is said to be pairwise closed (Pahk and Choi [7]) if $\{X - F_{\alpha} \mid \alpha \in A\}$ is pairwise open.

Definition 2.2([5]). In a bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$, the topology \mathscr{P}_i is said to be regular with respect to \mathscr{P}_j , if for each $x \in X$ and each (\mathscr{P}_i) closed set A with $x \notin A$, there exist $U \in \mathscr{P}_i$ and $V \in \mathscr{P}_j$ such that $x \in U, A \subset V$ and $U \cap V = \emptyset$. X is said to be pairwise regular if \mathscr{P}_i is regular with respect to \mathscr{P}_j for both i = 1 and i = 2.

Definition 2.3([11]). Let $(X, \mathscr{P}_1, \mathscr{P}_2)$ and $(Y, \mathscr{Q}_1, \mathscr{Q}_2)$ be two bitopological spaces and $\mathscr{P}_i \times \mathscr{Q}_i$ be the product topology on $X \times Y$ of the topologies \mathscr{P}_i and \mathscr{Q}_i on X and Y respectively. Then the bitopological space $(X \times Y, \mathscr{P}_1 \times \mathscr{Q}_1, \mathscr{P}_2 \times \mathscr{Q}_2)$ is called the product bitopological space of the spaces $(X, \mathscr{P}_1, \mathscr{P}_2)$ and $(Y, \mathscr{Q}_1, \mathscr{Q}_2)$.

Definition 2.4([9]). A set $A \subset X$ is said to be (i, j) regularly open if $A = (\mathscr{P}_i)$ int $((\mathscr{P}_j)$ clA).

A subset of X is said to be (i, j) regularly closed if its complement is (i, j) regularly open. In other words, a set $A \subset X$ is (i, j) regularly closed iff $A = (\mathscr{P}_i) \operatorname{cl}((\mathscr{P}_j) \operatorname{int} A)$.

Definition 2.5([9]). A bitopological space X is said to be pairwise semiregular iff for each $x \in X$ and each (\mathscr{P}_i) open set U with $x \in U$, there exists a (\mathscr{P}_i) open set V such that $x \in V \subset (\mathscr{P}_i)$ int $((\mathscr{P}_i) \text{cl} V) \subset U$.

Obviously, a pairwise regular space is pairwise semiregular.

Definition 2.6([9]). A bitopological space X is said to be pairwise almost regular if for each $x \in X$ and each (i, j) regularly closed set F with $x \notin F$, there exist a (\mathscr{P}_i) open set U and a (\mathscr{P}_j) open set V, $j \neq i, i, j \in \{1, 2\}$, such that $x \in U, F \subset V$ and $U \cap V = \emptyset$.

Equivalently, X is pairwise almost regular iff for each $x \in X$ and each (i, j) regularly open set U with $x \in U$, there exists a (\mathscr{P}_i) open set V such that $x \in V \subset (\mathscr{P}_j) \operatorname{cl} V \subset U$.

We introduce the following definitions.

Definition 2.7. A bitopological space X is said to be nearly pairwise compact if for each pairwise open cover \mathscr{U} of X, there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\{(\mathscr{P}_i) \operatorname{int}((\mathscr{P}_i) \operatorname{cl} V) \mid V \in \mathscr{V} \cap \mathscr{P}_i, i \in \{1, 2\}\}$ covers X.

126

Obviously, a pairwise compact space is nearly pairwise compact. The following examples shows that, the notion of pairwise near compactness and near pairwise compactness are independent.

Example 2.1. Let b be a fixed real number. We define

 $(R,\mathscr{P}_1,\mathscr{P}_2)$ is pairwise nearly compact but it is not nearly pairwise compact.

Example 2.2(cf. [11], p. 142). Let

$$\begin{aligned} \mathscr{P}_1 &= \{ \emptyset, R \} \bigcup \{ (-\infty, n) \mid n \in Z \}, \\ \mathscr{P}_2 &= \{ \emptyset, R \} \bigcup \{ (n, \infty) \mid n \in Z \} \end{aligned}$$

where Z is the set of integers. The bitopological space $(R, \mathscr{P}_1, \mathscr{P}_2)$ is not *ij*-nearly compact for any $i \in \{1, 2\}$. Hence the space is not pairwise nearly compact. The space is pairwise compact and hence it is also nearly pairwise compact.

Example 2.3. Let b be a fixed real number. We define

$$\begin{split} \mathscr{P}_1 &= \{ \emptyset, R \} \bigcup \{ (-\infty, b], (b, \infty) \}, \\ \mathscr{P}_2 &= \{ \emptyset, R \} \bigcup \{ (b, \infty) \} \bigcup \left\{ \left(b + \frac{1}{n}, \infty \right) \mid n \in N \right\}. \end{split}$$

 $(R, \mathscr{P}_1, \mathscr{P}_2)$ is nearly pairwise compact but it is not pairwise compact.

Definition 2.8. A bitopological space X is said to be almost pairwise compact if for each pairwise open cover \mathscr{U} of X, there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\{(\mathscr{P}_i) \text{cl} V \mid V \in \mathscr{V} \cap \mathscr{P}_i, i \in \{1, 2\}\}$ covers X.

It readily follows from definitions, a nearly pairwise compact space is an almost pairwise compact space.

Definition 2.9. A cover \mathscr{C} of X is said to be a pairwise basic cover if there exist two bases \mathscr{B}_1 and \mathscr{B}_2 of the topologies \mathscr{P}_1 and \mathscr{P}_2 respectively such that $\mathscr{C} \subset \mathscr{B}_1 \cup \mathscr{B}_2$ and for each $i \in \{1, 2\}, \ \mathscr{C} \cap \mathscr{B}_i \neq \emptyset$.

Definition 2.10. A collection \mathscr{U} (resp. \mathscr{F}) of subsets of X is said to be pairwise regularly open (resp. pairwise regularly closed) if each member of \mathscr{U} (resp. \mathscr{F}) is (i, j) regularly open (resp. (i, j) regularly closed) for some $i \in \{1, 2\}$ and contains at

least one (i, j) regularly open (resp. (i, j) regularly closed) set for each $i \in \{1, 2\}$. \mathscr{U} (resp. \mathscr{F}) is said to be a pairwise regularly open (resp. pairwise regularly closed) cover if it covers X.

Definition 2.11. A bifilter is a collection \mathscr{F} of nonempty subsets of X with the following properties:

- (a) $\mathscr{F} \subset \mathscr{P}_1 \cup \mathscr{P}_2$ and $\mathscr{F} \cap \mathscr{P}_i \neq \emptyset$ for each $i \in \{1, 2\}$.
- (b) If $E, F \in \mathscr{F}$ with $E, F \in \mathscr{P}_i$ for some $i \in \{1, 2\}$ then $E \cap F \in \mathscr{F}$.
- (c) If $G \in \mathscr{F}$ and $H \supset G$ with $G, H \in \mathscr{P}_i$ for some $i \in \{1, 2\}$ then $H \in \mathscr{F}$.

Definition 2.12. A bifilter \mathscr{F} on a bitopological space X is said to be maximal provided

- (a) for any bifilter \mathscr{G} on $X, \ \mathscr{G} \subset \mathscr{F}$,
- (b) if \mathscr{G} is a bifilter with $\mathscr{F} \subset \mathscr{G}$, then $\mathscr{F} = \mathscr{G}$.

Definition 2.13. A point $p \in X$ is said to be a bicluster point of a bifilter \mathscr{F} if for each $F \in \mathscr{F}$, $p \in (\mathscr{P}_i) clF$ whenever F is (\mathscr{P}_i) open for some $i \in \{1, 2\}$.

Definition 2.14. A (\mathscr{P}_i) open set containing a point $p \in X$ is said to be a (\mathscr{P}_i) open neighbourhood (abbreviated as (\mathscr{P}_i) open nbd) of p.

Definition 2.15. A point p is said to be a biconvergent point of a bifilter \mathscr{F} if each (\mathscr{P}_i) open nbd of p is a member of \mathscr{F} .

Throughout the paper, N denotes the set of natural numbers and R, the set of real numbers. For a pairwise open (resp. closed) collection \mathscr{U} (resp. \mathscr{F}) of subsets of a bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$, we write \mathscr{U}^i (resp. \mathscr{F}^i) to denote the collection of all (\mathscr{P}_i) open (resp. (\mathscr{P}_i) closed) sets in \mathscr{U} (resp. \mathscr{F}). (\mathscr{T}) intA (resp. (\mathscr{T}) clA) denotes the interior (resp. closure) of a set A in a topological space (X, \mathscr{T}) . Always $i, j \in \{1, 2\}$ and whenever i, j appear together, $j \neq i$.

3. Results

We now establish the following theorems on nearly pairwise compact spaces.

Theorem 3.1. In a bitopological space X, the following statements are equivalent:

- (a) X is nearly pairwise compact.
- (b) Each pairwise basic cover \mathscr{U} of X possesses a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\{(\mathscr{P}_i)int((\mathscr{P}_i)clV) \mid V \in \mathscr{V} \cap \mathscr{P}_i, i \in \{1,2\}\}$ covers X.
- (c) Each pairwise regularly open cover of X has a finite subcover.
- (d) Each pairwise regularly closed collection of subsets of X with finite intersection property has nonempty intersection.
- (e) Each pairwise closed collection $\mathscr{F} = \{F_{\alpha} \mid \alpha \in B\}$ of subsets of X with the property that for any finite subcollection $\mathscr{E} \subset \mathscr{F}, \bigcap \{(\mathscr{P}_i)cl((\mathscr{P}_j)intF_{\alpha}) \mid F_{\alpha} \in \mathscr{E}, i \in \{1,2\}\} \neq \emptyset$, has a nonempty intersection.

128

Proof. $(a) \Rightarrow (b)$: Obvious.

 $\begin{array}{l} (b) \Rightarrow (c): \text{ Let } \mathscr{G} = \{G_{\alpha} \mid \alpha \in A\} \text{ be a pairwise regularly open cover of } X \text{ and let } \mathscr{B}_i \text{ be a base of the topology } \mathscr{P}_i. \text{ For each } G_{\alpha} \in \mathscr{G} \text{ with } G_{\alpha} \in \mathscr{P}_i, \\ \text{ there exist } \mathscr{H}_{i\alpha} = \{H_{\lambda} \mid \lambda \in \Lambda_{\alpha}, H_{\lambda} \in \mathscr{B}_i\} \text{ such that } G_{\alpha} = \bigcup \{H_{\lambda} \mid H_{\lambda} \in \mathscr{H}_{i\alpha}\}. \\ \text{ Then } \mathscr{U} = \{H_{\lambda} \mid \lambda \in \Lambda_{\alpha}, \alpha \in A\} \text{ is a pairwise basic cover of } X. \text{ So by } (b), \text{ we obtain a finite subcollection } \mathscr{V} = \{H_{\lambda_k} \mid k = 1, 2, \ldots, m\} \text{ of } \mathscr{U} \text{ such that } \{(\mathscr{P}_i) \text{int}((\mathscr{P}_j) \text{cl} H_{\lambda_k}) \mid H_{\lambda_k} \in \mathscr{V} \cap \mathscr{P}_i, k = 1, 2, \ldots, m\} \text{ covers } X. \text{ For each } \\ H_{\lambda_k} \in \mathscr{P}_i, \text{ there exists a } G_{\alpha_k} \in \mathscr{P}_i, \alpha_k \in A \text{ such that } H_{\lambda_k} \subset G_{\alpha_k} \text{ which implies } \\ (\mathscr{P}_i) \text{int}((\mathscr{P}_j) \text{cl} H_{\lambda_k}) \subset (\mathscr{P}_i) \text{int}((\mathscr{P}_j) \text{cl} G_{\alpha_k}) = G_{\alpha_k}. \\ \text{ Then } \{G_{\alpha_k} \mid k = 1, 2, \ldots, m\} \text{ is a finite subcover of } \mathscr{G}. \end{array}$

 $(c) \Rightarrow (d)$: We suppose that $\mathscr{F} = \{F_{\alpha} \mid \alpha \in I\}$ is a pairwise regularly closed collection of subsets of X with finite intersection property i.e. for each $n \in N$, $\bigcap\{F_{\alpha_k} \mid k = 1, 2, \ldots, n\} \neq \emptyset$. If possible, let $\bigcap\{F_{\alpha} \mid \alpha \in I\} = \emptyset$. Then $\{X - F_{\alpha} \mid \alpha \in I\}$ is a pairwise regularly open cover of X. So by $(c), \{X - F_{\alpha} \mid \alpha \in I\}$ has a finite subcover $\{X - F_{\alpha_k} \mid k = 1, 2, \ldots, m\}$ which in turn implies $\bigcap\{F_{\alpha_k} \mid k = 1, 2, \ldots, m\} = \emptyset$. This is a contradiction to our assumption. Thus we have $\bigcap\{F_{\alpha} \mid \alpha \in I\} \neq \emptyset$.

 $\begin{array}{l} (d) \Rightarrow (e): \text{ We suppose that } \mathscr{F} = \{F_{\alpha} \mid \alpha \in B\} \text{ is a pairwise closed collection} \\ \text{of subsets of } X \text{ and } X - F_{\alpha} \in \mathscr{P}_i \text{ such that for any finite subcollection } \mathscr{E} \text{ of } \mathscr{F}, \\ \bigcap \{(\mathscr{P}_i) \mathrm{cl}((\mathscr{P}_j) \mathrm{int} F_{\alpha}) \mid F_{\alpha} \in \mathscr{E}, i \in \{1, 2\}\} \neq \emptyset. \text{ Thus } \{(\mathscr{P}_i) \mathrm{cl}((\mathscr{P}_j) \mathrm{int} F_{\alpha}) \mid \alpha \in B\} \text{ is a pairwise regularly closed collection of subsets of } X \text{ with finite intersection} \\ \mathrm{property.} \text{ So by } (d), \text{ we have } \bigcap \{(\mathscr{P}_i) \mathrm{cl}((\mathscr{P}_j) \mathrm{int} F_{\alpha}) \mid \alpha \in B\} \neq \emptyset. \text{ Since } F_{\alpha} \text{ is } \\ (\mathscr{P}_i) \mathrm{closed}, (\mathscr{P}_i) \mathrm{cl}((\mathscr{P}_j) \mathrm{int} F_{\alpha}) \subset F_{\alpha}. \text{ Thus it follows that } \bigcap \{F_{\alpha} \mid \alpha \in B\} \neq \emptyset. \end{array}$

(e) \Rightarrow (a): Suppose $\mathscr{U} = \{U_{\alpha} \mid \alpha \in A\}$ is a pairwise open cover of X. If possible, suppose X is not nearly pairwise compact. So for any finite subcollection $\{U_{\alpha_k} \mid \alpha_k \in A, k = 1, 2, ..., m\}$ of \mathscr{U} , $\{(\mathscr{P}_i)int((\mathscr{P}_j)clU_{\alpha_k}) \mid \alpha_k \in A, k = 1, 2, ..., m; U_{\alpha_k} \in \mathscr{P}_i, i \in \{1, 2\}\}$ is not a cover of X. Thus $\bigcap\{X - (\mathscr{P}_i)int((\mathscr{P}_j)clU_{\alpha_k}) \mid \alpha_k \in A, k = 1, 2, ..., m; U_{\alpha_k} \in \mathscr{P}_i, i \in \{1, 2\}\} \neq \emptyset$. Since $X - (\mathscr{P}_i)int((\mathscr{P}_j)clU_{\alpha_k}) \subset (\mathscr{P}_i)cl((\mathscr{P}_j)int(X - U_{\alpha_k})), \bigcap\{(\mathscr{P}_i)cl((\mathscr{P}_j)int(X - U_{\alpha_k})) \mid \alpha_k \in A, k = 1, 2, ..., m; U_{\alpha_k} \in \mathscr{P}_i, i \in \{1, 2\}\} \neq \emptyset$. Thus $\{X - U_{\alpha} \mid \alpha \in A\}$ is a pairwise closed collection of subsets of X satisfying the properties of (e). Hence $\bigcap\{X - U_{\alpha} \mid \alpha \in A\} \neq \emptyset$ which in turn implies $\bigcup\{U_{\alpha} \mid \alpha \in A\} \neq X$, which is a contradiction. \Box

Theorem 3.2. A pairwise semiregular space is nearly pairwise compact iff it is pairwise compact.

Proof. Firstly, suppose X is pairwise semiregular and nearly pairwise compact. Let $\mathscr{U} = \{U_{\alpha} \mid \alpha \in A\}$ be a pairwise open cover of X. For each $x \in X$, there exists a $U_{\alpha(x)} \in \mathscr{U}, \alpha(x) \in A$ with $x \in U_{\alpha(x)}$. Suppose $U_{\alpha(x)} \in \mathscr{P}_i$. So by pairwise semiregularity, there exists a (\mathscr{P}_i) open set G_x such that $x \in G_x \subset (\mathscr{P}_i)$ int $((\mathscr{P}_j) \operatorname{cl} G_x) \subset U_{\alpha(x)}$. Here $\mathscr{G} = \{(\mathscr{P}_i)$ int $((\mathscr{P}_j) \operatorname{cl} G_x) \mid x \in X\}$ is a pairwise regularly open cover of X. Using (c) of Theorem 3.1, we obtain a finite subcover $\{(\mathscr{P}_i)$ int $((\mathscr{P}_j) \operatorname{cl} G_{x_k}) \mid k = 1, 2, \ldots, n\}$ of \mathscr{G} which in turn implies $\{U_{\alpha(x_k)} \mid k = 1, 2, \ldots, n\}$ is a finite subcover of \mathscr{U} . The converse part is obvious. \Box **Theorem 3.3.** A pairwise almost regular space is nearly pairwise compact if it is almost pairwise compact.

Proof. Let $\mathscr{U} = \{U_{\alpha} \mid \alpha \in A\}$ be a pairwise regularly open cover of a pairwise almost regular and almost pairwise compact space X. For each $x \in X$, we have a $U_{\alpha(x)} \in \mathscr{U}, \alpha(x) \in A$ such that $x \in U_{\alpha(x)}$. Suppose $U_{\alpha(x)} \in \mathscr{P}_i$. Hence using the notion of pairwise almost regularity, we obtain a (\mathscr{P}_i) open set G_x such that $x \in G_x \subset (\mathscr{P}_j) \operatorname{cl} G_x \subset U_{\alpha(x)}$. Obviously, $\mathscr{G} = \{G_x \mid x \in X\}$ is a pairwise open cover of X. So there exists a finite subcollection $\{G_{x_k} \mid k = 1, 2, \ldots, n\}$ of \mathscr{G} such that $\{(\mathscr{P}_j) \operatorname{cl} G_{x_k} \mid k = 1, 2, \ldots, n\}$ covers X. Thus $\{U_{\alpha(x_k)} \mid k = 1, 2, \ldots, n\}$ is a finite subcover of \mathscr{U} for X. Hence X is nearly pairwise compact by (c) of Theorem 3.1.

Lemma 3.1. Each (\mathscr{P}_i) open cover \mathscr{U} of a (j,i) regularly closed subset F of a nearly pairwise compact space X has a finite subfamily \mathscr{V} of \mathscr{U} such that $\{(\mathscr{P}_i)int((\mathscr{P}_i)clA) \mid A \in \mathscr{V}\}$ covers F.

Proof. The proof is straightforward and hence omitted.

Theorem 3.4. Every pairwise Hausdorff, nearly pairwise compact space is pairwise almost regular.

Proof. Suppose X is a pairwise Hausdorff and nearly pairwise compact space. Let G be a (i, j) regularly open set and x be a point of X with $x \in G$. For each $y \in X - G$, we obtain a (\mathscr{P}_i) open set U_y and a (\mathscr{P}_j) open set V_y such that $x \in U_y, y \in V_y$ and $U_y \cap V_y = \emptyset$. Then $\mathscr{G} = \{V_y \mid y \in X - G\}$ is a (\mathscr{P}_j) open cover of the (i, j) regularly closed set X - G. So by Lemma 3.1, \mathscr{G} has a finite subcollection $\mathscr{H} = \{V_{y_k} \mid k = 1, 2, \ldots, n\}$ with $X - G \subset \bigcup \{(\mathscr{P}_j) \operatorname{int}((\mathscr{P}_i) \operatorname{cl} V_{y_k}) \mid k = 1, 2, \ldots, n\}$. We write $U = \bigcap_{k=1}^n U_{y_k}$ and $V = \bigcup_{k=1}^n (\mathscr{P}_j) \operatorname{int}((\mathscr{P}_i) \operatorname{cl} V_{y_k})$. Here U is (\mathscr{P}_i) open with $x \in U$ and V is (\mathscr{P}_j) open with $X - G \subset V$ and $U \cap V = \emptyset$. Thus $(\mathscr{P}_j) \operatorname{cl} U \subset X - V$. Therefore it follows that $x \in U \subset (\mathscr{P}_j) \operatorname{cl} U \subset G$. \Box

Theorem 3.5. If the topological space (X, \mathscr{T}) is nearly compact and the bitopological space $(Y, \mathscr{Q}_1, \mathscr{Q}_2)$ is nearly pairwise compact, then the product space $(X \times Y, \mathscr{T} \times \mathscr{Q}_1, \mathscr{T} \times \mathscr{Q}_2)$ is nearly pairwise compact.

 $\begin{array}{l} Proof. \mbox{ Let } \mathscr{U} \mbox{ be a pairwise basic cover of } X \times Y. \mbox{ For each } U \in \mathscr{U}, \mbox{ we have } U = G \times H, \mbox{ } G \in \mathscr{T} \mbox{ and } H \in \mathscr{Q}_i, \ i \in \{1,2\}. \mbox{ For each } x \in X, \mbox{ the space } \{x\} \times Y \mbox{ is nearly pairwise compact. Hence we get a finite number of elements } G_x^k \times H_x^k, \ k = 1, 2, \ldots, n \mbox{ of } \mathscr{U} \mbox{ such that } \{x\} \times Y \subset \bigcup_{k=1}^n (\mathscr{T} \times \mathscr{Q}_i) \mbox{int} ((\mathscr{T} \times \mathscr{Q}_j) \mbox{cl}(G_x^k \times H_x^k)) \mbox{ where we assume } H_x^k \in \mathscr{Q}_i. \mbox{ We suppose that all the sets } G_x^k \times H_x^k \mbox{ intersects } \{x\} \times Y. \mbox{ Then } x \in G_x \mbox{ where } G_x = \bigcap_{k=1}^n G_x^k \in \mathscr{T}. \mbox{ The } (\mathscr{T}) \mbox{open cover } \{G_x \mid x \in X\} \mbox{ of } X \mbox{ has a finite subfamily } G_{x_1}, G_{x_2}, \ldots, G_{x_m} \mbox{ such that } X = \bigcup_{l=1}^m (\mathscr{T}) \mbox{int} ((\mathscr{T}) \mbox{cl} G_{x_l}). \mbox{ Hence the collection } \{(\mathscr{T} \times \mathscr{Q}_i) \mbox{int} ((\mathscr{T} \times \mathscr{Q}_j) \mbox{cl} (G_{x_l}^k \times H_{x_l}^k)) \mid k = 1, 2, \ldots, n; \ l = 1, 2, \ldots, m\} \mbox{ covers } X \times Y \mbox{ and } \{G_{x_l}^k \times H_{x_l}^k \mid k = 1, 2, \ldots, n; \ l = 1, 2, \ldots, m\} \mbox{ is a finite subcollection of } \mathscr{U}. \equal for the terms of the subscale to the terms of the terms of the terms of terms of$

But the product of two nearly pairwise compact space need not be nearly pairwise compact. For, we consider Example 2.2. The space $(R, \mathscr{P}_1, \mathscr{P}_2)$ is nearly

pairwise compact, but the product space $(R \times R, \mathscr{P}_1 \times \mathscr{P}_1, \mathscr{P}_2 \times \mathscr{P}_2)$ is not nearly pairwise compact.

Lemma 3.2. A bifilter \mathscr{F} is maximal iff for some $i \in \{1, 2\}$, each (\mathscr{P}_i) open set A intersecting every member of \mathscr{F}^i belongs to \mathscr{F} .

Proof. Firstly, suppose \mathscr{F} is maximal. We write $\mathscr{G} = \{G \mid G \supset A \cap B \text{ for some } B \in \mathscr{F}^i \text{ and } G \text{ is } (\mathscr{P}_i)\text{open}\} \bigcup \mathscr{F}^j$. Obviously, \mathscr{G} is a bifilter with $\mathscr{G} \supset \mathscr{F}$ and $A \in \mathscr{G}$. Since \mathscr{F} is a maximal bifilter, we have $\mathscr{G} = \mathscr{F}$.

Conversely, suppose the condition holds. If \mathscr{F} is not maximal, there exists a bifilter \mathscr{H} such that $\mathscr{H} \supset \mathscr{F}$. Let $H \in \mathscr{H}$ and H be (\mathscr{P}_i) open. Then by definition of a bifilter, H intersects every member of \mathscr{H}^i and hence every member of \mathscr{F}^i . Thus $H \in \mathscr{F}$ and hence we have $\mathscr{H} = \mathscr{F}$. \Box

Lemma 3.3. A bicluster point of a bifilter is a biconvergent point if it is a maximal bifilter.

Proof. Suppose the maximal bifilter \mathscr{F} has a bicluster point p. Then for each $F \in \mathscr{F}, p \in (\mathscr{P}_i)$ clF whenever F is (\mathscr{P}_i) open for some $i \in \{1, 2\}$. So each (\mathscr{P}_i) open nbd V of p intersects every $F \in \mathscr{F}^i$. Thus by Lemma 3.2, $V \in \mathscr{F}$ which implies p is a biconvergent point of \mathscr{F} .

Lemma 3.4. Each pairwise open collection of subsets of X with finite intersection property is contained in a maximal bifilter.

Proof. The proof is straightforward and hence omitted.

Theorem 3.6. Let X be pairwise almost regular and each bifilter \mathscr{A} in X has the following property: For $A, B \in \mathscr{A}$ with $A \in \mathscr{P}_1$ and $B \in \mathscr{P}_2$, $A \cap B$ is nonempty (\mathscr{P}_i) open for each $i \in \{1, 2\}$. Then the following statements are equivalent:

- (a) X is nearly pairwise compact.
- (b) Each bifilter in X has a bicluster point.
- (c) Each maximal bifilter in X has a biconvergent point.

Proof. $(a) \Rightarrow (b)$: Let $\mathscr{G} = \{G_{\alpha} \mid \alpha \in A\}$ be a bifilter. For each $\alpha \in A$, we write $F_{\alpha} = (\mathscr{P}_i) \operatorname{cl} G_{\alpha}$ if $G_{\alpha} \in \mathscr{P}_i$. Then $\mathscr{F} = \{F_{\alpha} \mid \alpha \in A\}$ is a pairwise closed collection of subsets of X with following property: For any finite subcollection $\mathscr{E} \subset \mathscr{F}, \bigcap \{(\mathscr{P}_i) \operatorname{cl}((\mathscr{P}_j) \operatorname{int} F) \mid F \in \mathscr{E}\} \neq \emptyset$. Hence by Theorem 3.1(e), $\bigcap \{F_{\alpha} \mid \alpha \in A\} \neq \emptyset$. Thus there exists a $p \in X$ with $p \in F_{\alpha}$ for each $\alpha \in A$. So p is a bicluster point of \mathscr{G} .

 $(b) \Rightarrow (c)$: A maximal bifilter is of course a bifilter. So by (b), each maximal bifilter has a bicluster point p. It then follows by Lemma 3.3, p is a biconvergent point of the maximal bifilter.

 $(c) \Rightarrow (a)$: Let \mathscr{U} be a pairwise regularly open cover of X. Suppose \mathscr{U} has no finite subcollection covering X. Again for each $x \in X$, there exists a $U_x \in \mathscr{U}$ such that $x \in U_x$. Suppose U_x is (i, j) regularly open. Since X is pairwise almost regular, we obtain a (\mathscr{P}_i) open set G_x such that $x \in G_x \subset (\mathscr{P}_j) clG_x \subset U_x$. We

note here that $\mathscr{G} = \{G_x \mid x \in X\}$ is a pairwise open cover of X. Also $\mathscr{H} =$ $\{X - (\mathscr{P}_i) cl G_x \mid G_x \in \mathscr{G}\}$ is a pairwise open collection of subsets of X with finite intersection property. Now by Lemma 3.4, we obtain a maximal bifilter \mathscr{E} which contains \mathcal{H} . So by (c), \mathcal{E} has a biconvergent point p. A biconvergent point of a maximal bifilter is also a bicluster point. So if $E \in \mathscr{E}$ is (\mathscr{P}_i) open then $p \in (\mathscr{P}_i)$ clE for each $E \in \mathscr{E}$. Hence $p \in (\mathscr{P}_j) cl(X - (\mathscr{P}_j) clG_x)$ for each $G_x \in \mathscr{G}$. Now we show $p \notin G_x$ for any $G_x \in \mathscr{G}$. We need only to prove the case when $p \notin X - (\mathscr{P}_i) cl G_x$ but p is a (\mathscr{P}_j) limit point of $X - (\mathscr{P}_j) cl G_x$. If possible, let $p \in G_z$ for some $G_z \in \mathscr{G}$. For definiteness suppose, G_z is (\mathscr{P}_i) open. Now each (\mathscr{P}_i) open set A with $p \in A$ intersects each $E \in \mathscr{E}$ whenever E is (\mathscr{P}_j) open. Again G_z intersects each $E \in \mathscr{E}$ whenever E is (\mathscr{P}_i) open. Therefore by Lemma 3.2, $A, G_z \in \mathscr{E}$. So $A \cap G_z$ is (\mathscr{P}_i) open for each $i \in \{1,2\}$ and $p \in A \cap G_z \subset G_z$. Since p is a (\mathscr{P}_i) limit point of $X - (\mathscr{P}_j) cl G_z$ we have $(A \cap G_z) \cap (X - (\mathscr{P}_j) cl G_z) \neq \emptyset$ which is not possible since $G_z \cap (X - (\mathscr{P}_i) cl G_z) = \emptyset$. Thus our anticipation $p \notin G_x$ for any $G_x \in \mathscr{G}$ is true. This contradicts the fact that \mathscr{G} is a pairwise open cover of X. So \mathscr{U} must have a finite subcover. Hence X is nearly pairwise compact.

Remark 3.1. Theorem 3.6 also holds good if the expression 'X be pairwise almost regular' of the theorem is replaced by 'X be a bitopological space with each (X, \mathscr{P}_i) being regular'.

We now give an example of a bitopological space which satisfies the conditions of Theorem 3.6.

Example 3.1. For any $a \in R$, we define

$$\mathcal{P}_1 = \{ \emptyset, R, (-\infty, a), (-\infty, a], (a, \infty), R - \{a\} \},$$

$$\mathcal{P}_2 = \{ \emptyset, R, (-\infty, a), (-\infty, a] \}.$$

The bitopological space $(R, \mathscr{P}_1, \mathscr{P}_2)$ is pairwise almost regular. The possible bifilters of this space are $\{(-\infty, a], R\}, \{(-\infty, a), (-\infty, a], R - \{a\}, R\}$. Clearly, they satisfy the conditions of Theorem 3.6.

It also follows, the bitopological space $(R, \mathscr{P}_1, \mathscr{P}_2)$ is not pairwise regular.

Acknowledgements The first author is highly thankful to Prof. T. Noiri, Japan for helping us on supplying reprints/photocopies of some articles on near compactness and locally near compactness. The authors would like to thank the referees for valuable suggestions for improvement of the paper.

References

 D. Carnahan, Locally nearly-compact spaces, Boll. Unione Mat. Ital. (4), 6(1972), 146-153.

- [2] P. Fletcher, H. B. Hoyle III and C. W. Patty, The comparison of topologies, Duke Math. J., 36(1969), 325-331.
- [3] L. L. Herrington, Properties of nearly-compact spaces, Proc. Amer. Math. Soc., 45(1974), 431-436.
- [4] J. E. Joseph, Characterizations of nearly-compact spaces, Boll. Unione Mat. Ital. (5), 13-B(1976), 311-321.
- [5] J. C. Kelly, *Bitopological spaces*, Proc. Lond. Math. Soc. (3), **13**(1963), 71-89.
- [6] J. N. Nandi, Bitopological near compactness I: Characterizations, Bull. Calcutta Math. Soc., 85(1993), 337-344.
- [7] D. H. Pahk and B. D. Choi, Notes on pairwise compactness, Kyungpook Math. J., 11(1971), 45-52.
- [8] M. K. Singal and A. Mathur, On nearly compact spaces II, Boll. Unione Mat. Ital. (4), 9(1974), 670-678.
- [9] M. K. Singal and A. R. Singal, Some more separation axioms in bitopological spaces, Ann. Soc. Sci. Brux., 84(1970), 207-230.
- [10] M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Unione Mat. Ital. (4), 6(1969), 702-710.
- J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Indag. Math., 33(1971), 135-145.