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ABSTRACT. In this paper, we introduce the notion of near pairwise compactness which
generalizes the notion of pairwise compactness.

1. Introduction

Singal and Mathur [10] introduced and studied the notion of near compactness
by generalizing the concept of compactness of a topological space. Later the notion
of near compactness studied and developed considerably by Carnahan [1], Singal
and Mathur [8], Herrington [3], Joseph [4] and others. The notion of near compact-
ness became an important meadow to topologists. Following these trends, Nandi [6]
introduced the notion of near compactness in bitopological spaces: A bitopological
space (X, 21, Ps) is said to be ij-nearly compact if for each (Z;)open cover Z of
X, there exists a finite subcollection ¥ C % such that {(Z%)int((Z;)clV) |V € ¥}
covers X. X is said to be pairwise nearly compact if it is 12- and 21-nearly compact.
The notion of pairwise near compactness is defined considering only (£;)open sets.
As such, this notion of pairwise near compactness cannot be a generalization of
pairwise compactness (Fletcher et al. [2]). In this paper, we introduce a generalized
notion of pairwise compactness and we call it nearly pairwise compact (Definition
2.7). Tt is also a generalization of near compactness.

* Corresponding Author.

Received March 30, 2011; revised October 5, 2011; accepted July 24, 2012.

2010 Mathematics Subject Classification: 54D30, 54E55.

Key words and phrases: (i, j)regularly open, (i, j)regularly closed, pairwise semiregular,
pairwise almost regular, nearly pairwise compact, almost pairwise compact, bifilter, bi-
cluster point, biconvergent point.

125



126 A. Mukharjee and M. K. Bose

2. Preliminaries

Unless or otherwise mentioned, X stands for the bitopological space (X, &,
P5). We recall the following definitions.

Definition 2.1. A collection % = {U, | o € A} is said to be pairwise open if for
each a € A, U,, is (£;)open for some i € {1,2} and for each i € {1,2}, Z NZP; # .
A pairwise open collection covering X is called a pairwise open cover (Fletcher et
al. [2]).

A collection # = {F, | a € A} of subsets of X is said to be pairwise closed
(Pahk and Choi [7]) if {X — F, | @ € A} is pairwise open.

Definition 2.2([5]). In a bitopological space (X, &1, &,), the topology &; is said
to be regular with respect to ;, if for each z € X and each (Z;)closed set A with
x ¢ A, there exist U € &; and V € & such that x e UUACVand UNV = .
X is said to be pairwise regular if &; is regular with respect to #; for both i =1
and i = 2.

Definition 2.3([11]). Let (X, &1, %) and (Y, 21, Z2) be two bitopological spaces
and &; x 2; be the product topology on X x Y of the topologies &Z; and 2; on
X and Y respectively. Then the bitopological space (X x Y, & x 21, Py x Z5) is
called the product bitopological space of the spaces (X, 21, %) and (Y, 21, 2s).

Definition 2.4([9]). A set A C X is said to be (i,j)regularly open if A =
A subset of X is said to be (i,j)regularly closed if its complement is

(i,j)regularly open. In other words, a set A C X is (i,j)regularly closed iff
A= (Z;)cl((Z))intA).

Definition 2.5([9]). A bitopological space X is said to be pairwise semiregular iff
for each x € X and each (Z;)open set U with © € U, there exists a (£Z;)open set
V such that x € V C (&;)int((Z;)clV) C U.

Obviously, a pairwise regular space is pairwise semiregular.

Definition 2.6([9]). A bitopological space X is said to be pairwise almost regular
if for each x € X and each (i, j)regularly closed set F with x ¢ F, there exist a
(Z;)open set U and a (Z;)open set V, j #1i, 4,5 € {1,2}, suchthat x € U, F C V
and UNV = 0.

Equivalently, X is pairwise almost regular iff for each x € X and each
(i, j)regularly open set U with = € U, there exists a (Z;)open set V such that
eV C(P)clV CU.

We introduce the following definitions.

Definition 2.7. A bitopological space X is said to be nearly pairwise compact if
for each pairwise open cover % of X, there exists a finite subcollection ¥ C %
such that {(2;)int((2;)clV) |V € ¥ N P, i € {1,2}} covers X.
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Obviously, a pairwise compact space is nearly pairwise compact. The following
examples shows that, the notion of pairwise near compactness and near pairwise
compactness are independent.

Example 2.1. Let b be a fixed real number. We define

mU{ (s~ 5ox) nevfuse,
0.0 U{ (-0 1) Ine N} Uit boo)

Ufr Lo imen).

(R, Py, P,) is pairwise nearly compact but it is not nearly pairwise compact.

P

Py

Example 2.2(cf. [11], p. 142). Let
21 = {0, R} J{(~o0,n) | n € 2},
Z: = {0, R} J{(n,00) |n € 2}

where Z is the set of integers. The bitopological space (R, #1, %) is not ij-nearly
compact for any ¢ € {1,2}. Hence the space is not pairwise nearly compact. The
space is pairwise compact and hence it is also nearly pairwise compact.

Example 2.3. Let b be a fixed real number. We define
’@1 = {Q)vR} U{(—OO,b],(b,OO)},
1
{@,R}U{(b,oo)}U{(b—i— n,oo) |ne N}.

(R, &1, P,) is nearly pairwise compact but it is not pairwise compact.

P

Definition 2.8. A bitopological space X is said to be almost pairwise compact if
for each pairwise open cover % of X, there exists a finite subcollection ¥ C % such
that {(22)clV |V € ¥ N Z;, i € {1,2}} covers X.

It readily follows from definitions, a nearly pairwise compact space is an almost
pairwise compact space.

Definition 2.9. A cover % of X is said to be a pairwise basic cover if there exist two
bases %, and %> of the topologies &1 and s respectively such that € C %, U %o
and for each i € {1,2}, € N %, # 0.

Definition 2.10. A collection % (resp. %) of subsets of X is said to be pairwise
regularly open (resp. pairwise regularly closed) if each member of % (resp. %) is
(i, j)regularly open (resp. (i, j)regularly closed) for some i € {1,2} and contains at
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least one (4, j)regularly open (resp. (i,j)regularly closed) set for each i € {1,2}. %
(resp. %) is said to be a pairwise regularly open (resp. pairwise regularly closed)
cover if it covers X.

Definition 2.11. A bifilter is a collection .% of nonempty subsets of X with the
following properties:

(a) F C P1U P and F N P; # 0 for each i € {1,2}.
(b) Y E,F € Z with E,F € &; for some i € {1,2} then ENF € #.
(¢) f Ge.F and H D G with G, H € &, for some i € {1,2} then H € .Z#.

Definition 2.12. A bifilter .# on a bitopological space X is said to be maximal
provided

(a) for any bifilter 4 on X, ¢4 C Z,
(b) if 4 is a bifilter with % C ¢, then .¥ =¥.

Definition 2.13. A point p € X is said to be a bicluster point of a bifilter .% if
for each F' € .F, p € (£;)clF whenever F is (£;)open for some i € {1,2}.

Definition 2.14. A (£?;)open set containing a point p € X is said to be a (ZZ;)open
neighbourhood (abbreviated as (£;)open nbd) of p.

Definition 2.15. A point p is said to be a biconvergent point of a bifilter .% if
each (Z;)open nbd of p is a member of .Z#.

Throughout the paper, N denotes the set of natural numbers and R, the set
of real numbers. For a pairwise open (resp. closed) collection % (resp. %) of
subsets of a bitopological space (X, 21, %), we write Z* (resp. .F*) to denote
the collection of all (;)open (resp. (Z;)closed) sets in % (resp. .#). (7 )intA
(resp. (7)clA) denotes the interior (resp. closure) of a set A in a topological space
(X,.7). Always i,j € {1,2} and whenever i, j appear together, j # i.

3. Results
We now establish the following theorems on nearly pairwise compact spaces.

Theorem 3.1. In a bitopological space X, the following statements are equivalent:

(a) X is nearly pairwise compact.

(b) Each pairwise basic cover % of X possesses a finite subcollection ¥V C %
such that {(Z;)int((P;)clV) |V € ¥ NP, i € {1,2}} covers X.

(¢) Each pairwise regularly open cover of X has a finite subcover.

(d) Each pairwise reqularly closed collection of subsets of X with finite intersec-
tion property has nonempty intersection.

(e) Each pairwise closed collection F = {F, | a € B} of subsets of X with
the property that for any finite subcollection & C .F, ({(Z)cl((Z;)intFy) |
F, e é&,ie{1,2}} #0, has a nonempty intersection.
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Proof. (a) = (b): Obvious.

(b) = (¢): Let 4 = {G, | @ € A} be a pairwise regularly open cover of
X and let %; be a base of the topology &;. For each G, € ¥ with G, € 2,
there exist ¢, = {Hx | A € Ay, Hy € %,;} such that G, = U{H»\ | Hx €
Hiot. Then % = {H) | A € Ay, a € A} is a pairwise basic cover of X. So
by (b), we obtain a finite subcollection ¥ = {H,, | k = 1,2,...,m} of Z such
that {(£)int((Z;)clHy,) | Hx, € ¥ N P, k = 1,2,...,m} covers X. For each
H,, € Z;, there exists a G, € &, ar € A such that Hy, C G,, which implies
(Z)int((Z;)clHy, ) C (Z)int((Z)clGa,) = Ga,. Then {Go, | k=1,2,...,m}
is a finite subcover of ¥.

(¢) = (d): We suppose that .# = {F,, | a € I'} is a pairwise regularly closed col-
lection of subsets of X with finite intersection property i.e. for each n € N, ({Fu, |
k=1,2,...,n} # 0. If possible, let (\{Fa | €I} =0. Then {X —F, |a € }isa
pairwise regularly open cover of X. So by (¢),{X — F,, | « € I'} has a finite subcover
{X —F,, | k=1,2,...,m} which in turn implies {F,, | ¥ = 1,2,...,m} = 0.
This is a contradiction to our assumption. Thus we have ({F, | a € I} # (.

(d) = (e): We suppose that . = {F, | « € B} is a pairwise closed collection
of subsets of X and X — F,, € &; such that for any finite subcollection & of %,
N{(Z2:)cl((Z;)intFy) | Fo € &, 4 € {1,2}} # 0. Thus {(Z%)cl((Z))intF,) | o €
B} is a pairwise regularly closed collection of subsets of X with finite intersection
property. So by (d), we have N{(Z;)cl((Z;)intF,) | o € B} # (. Since F, is
(Z;)closed, (Z;)cl((Z;)intF,) C F,. Thus it follows that ({F, | & € B} # 0.

() = (a): Suppose % = {U, | o € A} is a pairwise open cover of
X. [1If possible, suppose X is not nearly pairwise compact. So for any finite
subcollection {U,, | o € A,k = 1,2,....,m} of %, {(Z%)int((Z;)clU,,) |
ar € Ak = 1,2,....m;U,, € P, i € {1,2}} is not a cover of X. Thus
(X — (Z)nt((Z))clU,,) | o € A, bk =1,2,...,m; Uy, € P, 0 € {1,2}} # 0.
Since X —(Z)int((2;)clU,,, ) C (2;)cl((Z5)int(X —Uy,)), (W (Z%)cl((Z;)int(X —
Us)) o € A, k=1,2,... . m; Uy, € P, i€ {1,2}} #0. Thus {X — U, | a € A}
is a pairwise closed collection of subsets of X satisfying the properties of (e). Hence
({X — U, | @ € A} # 0 which in turn implies |J{U, | @ € A} # X, which is a
contradiction. O

Theorem 3.2. A pairwise semireqular space is nearly pairwise compact iff it is
pairwise compact.

Proof. Firstly, suppose X is pairwise semiregular and nearly pairwise compact.
Let % = {U, | @ € A} be a pairwise open cover of X. For each z € X,
there exists a Uy € %, a(r) € A with © € U,y). Suppose Uymy € Zi.
So by pairwise semiregularity, there exists a (£;)open set G, such that x €
G, C (Z)int((Z5)clGy) C Uy Here & = {(Z;)int((P;)clG,) | v € X} is
a pairwise regularly open cover of X. Using (¢) of Theorem 3.1, we obtain a fi-
nite subcover {(Z%)int((Z;)clGy,) | k = 1,2,...,n} of 4 which in turn implies
{Ua(z) | kK =1,2,...,n} is a finite subcover of % . The converse part is obvious.O
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Theorem 3.3. A pairwise almost reqular space is nearly pairwise compact if it is
almost pairwise compact.

Proof. Let %4 = {U, | a« € A} be a pairwise regularly open cover of a pairwise
almost regular and almost pairwise compact space X. For each x € X, we have
a Uy € %, a(z) € A such that © € Uy (yy. Suppose Uy(z) € &% Hence using
the notion of pairwise almost regularity, we obtain a (£?;)open set G, such that
r € Gy C (P))clG, C Uy(yy. Obviously, 4 = {G, | € X} is a pairwise open cover
of X. So there exists a finite subcollection {G4, | k = 1,2,...,n} of ¢4 such that
{(Z)clGy,, | k= 1,2,...,n} covers X. Thus {Uy(y,) | k= 1,2,...,n} is a finite
subcover of % for X. Hence X is nearly pairwise compact by (¢) of Theorem 3.1.0

Lemma 3.1. FEach (Z;)open cover % of a (j,i)regularly closed subset F of
a nearly pairwise compact space X has a finite subfamily ¥ of % such that
{(Z;)int((Z;)clA) | A€ ¥} covers F.

Proof. The proof is straightforward and hence omitted. o

Theorem 3.4. Every pairwise Hausdor(f, nearly pairwise compact space is pairwise
almost regular.

Proof. Suppose X is a pairwise Hausdorff and nearly pairwise compact space. Let G
be a (i, j)regularly open set and = be a point of X with x € G. For each y € X — G,
we obtain a (Z%)open set U, and a (Z?;)open set V, such that x € Uy, y € V,,
and Uy NV, = 0. Then 4 = {V, | y € X — G} is a (&;)open cover of the
(i,7)regularly closed set X — G. So by Lemma 3.1, ¢4 has a finite subcollection
H={Vy, |k=1,2,...,n} with X -G C | J{(Z)int((Z)clV,,) | k=1,2,...,n}.
We write U = (;_, Uy, and V = J;_,(Z;)int((2;)clV,, ). Here U is (2;)open
with € U and V is (Zj)open with X — G C V and U NV = . Thus
(Z;)clU C X — V. Therefore it follows that € U C (&;)clU C G. m

Theorem 3.5. If the topological space (X,.T) is nearly compact and the bitopo-
logical space (Y, 21, 25) is nearly pairwise compact, then the product space (X X
Y, T x 21, x 25) is nearly pairwise compact.

Proof. Let % be a pairwise basic cover of X x Y. For each U € %, we have U =
GxH,Ge J and H € 2;,i € {1,2}. For each x € X, the space {z} XY is nearly
pairwise compact. Hence we get a finite number of elements GX x HF k =1,2,...,n
of % such that {x} xY C |Up_, (7 x 2;)int((F x 2;)cl(Gk x HF)) where we assume
HEF € 9;. We suppose that all the sets G¥ x H¥ intersects {z} x Y. Then z € G,
where G, = (;_,G* € 7. The (J)open cover {G, | € X} of X has a finite
subfamily G,,,Gy,, ..., Gy, such that X = (J;",(7)int((7)clGy, ). Hence the col-
lection {(7 x 2;)int((7 x 2;)cl(GE, xHE)) | k=1,2,...,n; 1 =1,2,...,m} covers
X xY and {GE x HF | k=1,2,...,n;1=1,2,...,m} is a finite subcollection of
U. O

But the product of two nearly pairwise compact space need not be nearly pair-
wise compact. For, we consider Example 2.2. The space (R, %, %) is nearly
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pairwise compact, but the product space (R x R, &1 x Py, Py X P5) is not nearly
pairwise compact.

Lemma 3.2. A bifilter Z is mazimal iff for some i € {1,2}, each (Z;)open set A
intersecting every member of F' belongs to .F.

Proof. Firstly, suppose % is maximal. We write ¥ = {G | G D AN B for some
B € Z%" and G is (2;)open}|J.Z7. Obviously, ¢ is a bifilter with 4 > % and
A€ 9. Since . is a maximal bifilter, we have ¥ = .Z.

Conversely, suppose the condition holds. If .% is not maximal, there exists a
bifilter 7 such that 7 > .%. Let H € 2 and H be (Z;)open. Then by definition
of a bifilter, H intersects every member of ¢ and hence every member of .%?.
Thus H € # and hence we have 7 = .7. O

Lemma 3.3. A bicluster point of a bifilter is a biconvergent point if it is a mazimal
bifilter.

Proof. Suppose the maximal bifilter .# has a bicluster point p. Then for each
F € 7, p € (Z;)clF whenever F is (Z;)open for some ¢ € {1,2}. So each
(Z;)open nbd V of p intersects every F' € .#*. Thus by Lemma 3.2, V € .% which
implies p is a biconvergent point of .%. O

Lemma 3.4. Fach pairwise open collection of subsets of X with finite intersection
property is contained in a mazximal bifilter.

Proof. The proof is straightforward and hence omitted. O

Theorem 3.6. Let X be pairwise almost reqular and each bifilter o7 in X has the

following property: For A,B € & with A € & and B € &5, AN B is nonempty
(P;)open for each i € {1,2}. Then the following statements are equivalent:

(a
(b
(

C

) X is nearly pairwise compact.
) FEach bifilter in X has a bicluster point.
) Each mazimal bifilter in X has a biconvergent point.

Proof. (a) = (b): Let 4 = {Go | @ € A} be a bifilter. For each a € A, we
write F, = (%;)clG,, if G, € &;. Then % = {F, | a € A} is a pairwise closed
collection of subsets of X with following property: For any finite subcollection
& C F,((Z)d((Z))intF) | F € &} # 0. Hence by Theorem 3.1(e), ({{Fa | a €
A} # (). Thus there exists a p € X with p € F,, for each a € A. So p is a bicluster
point of ¢4.

(b) = (¢): A maximal bifilter is of course a bifilter. So by (b), each maximal
bifilter has a bicluster point p. It then follows by Lemma 3.3, p is a biconvergent
point of the maximal bifilter.

(¢) = (a): Let  be a pairwise regularly open cover of X. Suppose % has
no finite subcollection covering X. Again for each z € X, there exists a U, € %
such that € U,. Suppose U, is (i, j)regularly open. Since X is pairwise almost
regular, we obtain a (£;)open set G, such that z € G, C (#;)clG, C U,. We
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note here that 4 = {G, | © € X} is a pairwise open cover of X. Also ¢ =
{X — (Z))clG, | G, € 9} is a pairwise open collection of subsets of X with finite
intersection property. Now by Lemma 3.4, we obtain a maximal bifilter & which
contains J#. So by (¢), & has a biconvergent point p. A biconvergent point of a
maximal bifilter is also a bicluster point. So if E € & is (£;)open then p € (Z;)clE
for each E € &. Hence p € (Z;)cl(X — (Z;)clG,) for each G, € 4. Now we show
p ¢ G, for any G, € 4. We need only to prove the case when p ¢ X — (22;)clG,
but p is a (£2;)limit point of X — (22;)clG,. If possible, let p € G, for some
G, € 9. For definiteness suppose, G is (Z;)open. Now each (Z?;)open set A with
p € A intersects each E € & whenever F is (Z;)open. Again G, intersects each
E € & whenever E is (Z;)open. Therefore by Lemma 3.2, A,G, € &. So ANG, is
(Z;)open for each i € {1,2} and p € ANG, C G,. Since p is a (Z;)limit point of
X — (Z5)clG, we have (ANG,) N (X — (P;)clG.) # 0 which is not possible since
G.N (X = (Z)clG.) = 0. Thus our anticipation p ¢ G, for any G, € ¢ is true.
This contradicts the fact that ¢ is a pairwise open cover of X. So % must have a
finite subcover. Hence X is nearly pairwise compact. O

Remark 3.1. Theorem 3.6 also holds good if the expression ‘X be pairwise almost
regular’ of the theorem is replaced by ‘X be a bitopological space with each (X, &7;)
being regular’.

We now give an example of a bitopological space which satisfies the conditions
of Theorem 3.6.

Example 3.1. For any a € R, we define

21 = {0,R,(—00,a),(—0,a],(a,00), R —{a}},
Py = {0,R,(—00,a),(—00,a]}.
The bitopological space (R, %1, %5) is pairwise almost regular. The possible bifil-

ters of this space are {(—o0,al, R}, {(—00,a),(—00,a], R — {a}, R}. Clearly, they
satisfy the conditions of Theorem 3.6.

Tt also follows, the bitopological space (R, %, 93) is not pairwise regular.
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