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ABSTRACT. Based on the concept of the folding, the folding in X-direction and in Y-
direction are defined and denoted by the X-Folding and the Y-Folding respectively. We
consider a random variable X which follows a rectangular distribution ” R(a,b) distribu-
tion” with two parameters a,b. This paper aims to apply the folding on the unit area
P(a < X <b) and also to study the proposed folding in each direction for R(a,b) distri-
bution and the generated family of the corresponding constructed rectangular probability
distributions. Some main properties of this family are reviewed. According to the pro-
posed folding, we derive and discuss some important corresponding functions in closed
forms.

1. Introduction

The main idea of folding on manifolds has been introduced by S. A. Robertson
who studied the stratification determined by the folds or singularities [13]. Based on
this paper, some studies on folding in many branches such as manifolds, topology,
graphs-theory and algebra have been presented in some literatures [1, 2, 3, 4, 5, 6,
7, 8,9, 12]. The conditional foldings of manifolds have been defined by M. El-Ghoul
[3]. Some applications on the folding of a manifold into itself were introduced by
P. Di. Francesco [2]. Also a graph folding has been presented and discussed by E.
El-Kholy [7]. Moreover, the theory of isometric foldings has been pushed and also
some different types of foldings have been discussed by E. El-Kholy and others [9].
In this article we will discuss the folding of a family of probability distributions into
a generated family of the same type of the probability distributions. Our study will
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be concerned on the folding of the rectangular distribution R(a,b) with two parame-
ters a, b, where a < b. We will apply the X-Folding and Y-Folding, which generate a
sequence of areas and a corresponding sequence of rectangular distributions. Some
fundamental properties of the R(a,b) distribution are reviewed in [10, 11]. Thus,
we will be concerned on a study of some main properties of the generated family of
rectangular distributions by folding.

This paper is organized as follows: Section 2 reviews the original R(a,b) dis-
tribution and its fundamental properties. In sections 3 and 4, we introduce the
X-Folding and the Y-Folding and present a study of the generated families of the
corresponding rectangular probability distributions and some main statistical and
geometrical properties. Section 5 gives some attention to application. We summa-
rize the results and give some features and comments in section 6.

2. The rectangular distribution and its properties

In probability theory and statistics, the rectangular distribution is a family of
probability distributions such that for each member of the family, all intervals of
the same length on the distribution’s support are equally probable. The support
is defined by the two parameters a, b, which are its minimum and maximum values
(start-point and end-point). The distribution is often abbreviated R(a, b).

According to [10, 11], the continuous random variable X has a R(a,b) distribu-
tion if its probability density function is given by:

7 : z€a
(2.1) Gran) (@) =
0 :  otherwise

The cumulative distribution function of the R(a,b) variable X is

0 z<a
(2.2) GRap)(T) = =4 a<z<b
1 : >0

with the corresponding inverse cumulative distribution function (critical value or
quantile function)

(2.3) w0 = Gyl (@) =a+alb—a),

where P[X > xf(“’b)] =a, a€(0,1). The R(a,b) distribution is symmetric about
the mean pu = (a + b)/2 and its variance o2 equals (b — a)?/12. It has zero value
for the skewness and its excess kurtosis is equal to —1.20. Moreover, its moment-
generating function and the characteristic function are given respectively as the
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following:

ebt _ eat e’ibt _ eiat
—\ U t)y=———, |t 0, i=+v-1.
(bfa)t R(a,b)( ) Z(b*(l)t | | 7é

From the moment generating function, the r-th non-central moments can be calcu-
lated by the closed form pu, = ﬁ Y ro akb"*. The probability that a rectangu-
lar (uniformly) distributed random variable fall within any interval of fixed length is
independent of the location of the interval itself (but it is dependent on the interval
size), so long as the interval is contained in the distribution’s support. To see this, if

X has R(a,b) distribution and [z, z+d] is a subinterval of [a, b] with fixed d > 0, then

(24)  Mp@p(t) =

z+d 1 d

dt =
b—a b—a’

P(X €[z,z+d]) = /

x

which is independent of x . This fact motivates the distribution’s name. Restricting
(a,b) = (0,1), the resulting distribution R(0,1) is called a standard rectangular
distribution or a square distribution.

3. X-Folding of a rectangular distribution and its properties

In this section we will start introducing the definition of the X-Folding of the
corresponding rectangular with unit area of the R(a,b) distribution. Here, we will
discuss this folding and its corresponding areas, distributions and properties.

Definition 3.1. The X-Folding on the R(a,b) distribution is the map Fx : R? —
R? such that:

2ux—=zy)  a<z<px
(3.1) Fx(z,y) = (z,v) Dopux <z <b
0 : otherwise

where px is the corresponding mean of R(a,b) distribution.

Definition 3.2. A set of singular points of the X-Folding Fx on R(a,b) is denoted
by 3 Fx and it is defined by 3 Fx = {(ux,y) € B> : y€[0,:=]}.

Definition 3.3. Let ax, = w and let p1x, be the corresponding mean of

R(ax,,b) distribution, £k = 0,1,2,3,... . The sequence {Fx, }?°, of the X-Folding
on the R(a,b)distribution is defined by:

2 px, —zy) ¢ ax, Sz <px,
(3.2) Fx, (z,y) = (z,y) Dopx, <x<b

0 : otherwise
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with 3> Fx, = {(ux,,y) € R*} : y € [0, 2]} as a corresponding set of singular
points of F, .

Lemma 3.1. Let {Fx, }32, be a sequence of the X-Folding on the R(a,b)distribution.
Then the sequence of the corresponding areas {Ax, }32, of {Fx,}i>, has the fol-
lowing properties:

(1) Ax, = Fx,(Ax,_,) = 5, k=1,2,3,..., with Ax, =1,

(2) the sequence {Ax, }72, s a monotone decreasing sequence of areas,

(3) llmkﬁoo AXk =0 and leil Axk = AXO .

Proof. Follows directly by using the Definition 3.3 and the sum of a geometric se-
quence. O
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Figure 1: The corresponding areas of a sequence of the X-Folding on the
R(a,b) distribution.

Figure 1 illustrates the corresponding generated areas by applying a sequence
of the X-Folding on the R(a,b) distribution. The vertices in this figure are given by
the following:

1 1 a+b
)7 Vg = (b7m)7 Vy = (byo)a Vs :( 2

1/12((1,0), V2:(aa 70)7

a+b 1 ), v _(a—|—3b 1 a—+ 3b
2 b—a” T

Lemma 3.2. Let X = Xy be a continuous random variable which has the R(a,b)

a+7b
4 7b_a)7 VS_( 4 ?0)7 Vg—( 8 7O)a--~

1/6:(

distribution with the minimum value a in X-azes. Apply a sequence of X-Folding

{Fx,}2, defiened on the R(a,b) distribution, then we get on a sequence of the
k

corresponding minimum values {ax, }7>, = {W}ﬁo of the generated in-

tervals on X-azes.

Proof. Follows directly by applying Definition 3.3 and also by using the mathemat-
ical induction. O

Proposition 3.1. Let X = Xy be a continuous random variable which has the
R(a,b) distribution with the minimum value a in X-azes. Applying a sequence of
X-Folding {Fx, }3, defined on the R(a,b) distribution. Then, a sequence of con-
tinuous random variables { X1, }32, of the k-th X-Folding Fx, can be generated with
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the following properties:

(1) Each random wvariable Xy, k = 0,1,2,3,..., has rectangular distribution on
the corresponding interval (ax, , b) ,k = 0,1,2,3,... , and the probability density
function is given by the following closed form:

b—a CoxTE [an ’ b]
(33) 9x,.(x) =
0 : otherwise,

2) the mean px, of Xi; k=0,1,2,3,..., is given by:
k
a+ (281 )b
(3.4) BXe = —opg1 k=0,1,2,3,...,
3) the variance of Xy ; k=0,1,2,3,..., is given by:
g Y

1 (b—a)?
2 _ L
(3.5) TN = o D 1k=0,1,2,3,...,

(4) the cumulative distribution function of Xy, k=0,1,2,3,..., is given by:

0 : < ax,
(3.6) Gx, (z) = { LGma@-D@=b) . o —pcp
1 : r>b

(5) the moment-generating function of X, k=0,1,2,3,..., is given by:

6bt _ ean t

3.7 Mx, ()= —— t 0
(37) (=Gt H1#0
(6) the characteristic function of the random variable Xy, k =0,1,2,3, ..., is given
by:

eibt _ eiaxk t
3.8 Uy, (t)= ———— t 0, i=+v-1.
() w ()= S [H1#0. =V

Proof. (1) By applying the Folding Fx, of the rectangular with area Ax, on the
interval (a,b) on X-axes, a continuous rectangular random variable X; can be gen-
erated on the interval (ax,,b). The corresponding probability density function of
X is given in the following closed form:

ﬁ :ox € lax,,b]

9x, (z) =
0 :  otherwise,
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Repeat the previous step by the Folding F'y, with respect to the obtained area
Ax, = Fx,(4x,), then Xo can be generated on the interval (ax,,b) with the
corresponding probability density function in the following closed form:

—a . xr e [aX2 5 b]
9x,(x) =
0 : otherwise,

We iterate the process as in the previous steps by apply Fx, , k = 3,4,5, ..., with
respect to Ax, = Fx, (Ax,_,), respectively. It is easy to get on a corresponding se-
quence of continuous random variables { X} }7° ; of {Fx, }32, with (3.3) as a closed
form of the probability density function.

(2) Due to Definition 3.3 and the definition of the mean, we will get on a sequence
of corresponding mean px, of the random variable Xj,, £k =0,1,2,3, ..., asin (3.4).

(3) Since each random variable X} has R(ax,,b) distribution,k = 0,1,2,3,...,
then its variance is given by:

(b—ax.)2
o} = U k=012,

It is a direct consequence of the last equation and Lemma 3.1 that, the closed form
(3.5) of the variance 0%, of X, k=0,1,2,3,..., can be obtained.

(4) Since each random variableX} has R(ax,,b) distribution, & = 0,1,2,3, ...,
then its corresponding cumulative distribution function Gx,, k = 0,1,2,3,..., in

the closed form (3.6) can be easily deduced by replacing a with ax, in the form (2.2).

(5) Putting ay, instead of a in (2.4), then the closed form (3.7) of the correspond-
ing moment-generating function of X, k =0,1,2,3,..., can be also easily obtained.

(6) As in (5), replace a by ax, in (2.4) then the corresponding characteristic func-

tion of X, k=0,1,2,3,..., is given by the closed form (3.8). O
G e G.*.'
1 1 1 _
: ; Y ¥ 5

Figure 2: The corresponding cumulative distribution functions of a
sequence {Fx, }7° .



On the Folding of the Rectangular Distribution 111

Figure 2 illustrates the corresponding generated cumulative distribution functions
by applying a sequence of the X-Folding on the R(a,b) distribution.

Proposition 3.2. Let { X} }72, be a generated sequence of continuous random vari-
ables of the sequence {Fx, }7°, of the k-th X-Folding, where X = X, is the R(a,b)
variable, and let {Ax, }32, be a sequence of the corresponding areas. Then, for
k=0,1,2,3,..., we can find the following statements:

(1)PXk(anSXSb):Px((J,SXSb):l,

(2) Ax, = Px (ax, <X <b) =5,

(S)Px(axk SXSb):QLkPXk(an SXSb)a

(4) for any two real constants ¢ and d, Px (c< X <d)= 5 Px, (c< X <d).
Proof. 1t is a direct consequence of the previous definitions, lemmas and proposition
that the relations (1) - (4) can be easily derived. a

Corollary 3.1. Let {X;}72, be a generate sequence of continuous random vari-
ables of the sequence {Fx, }72, of the k-th X-Foldings, where X = X, is the R(a,b)
variable, and let {Ax,}72, be a sequence of the corresponding areas. Then, for
k=0,1,2,3,..., we can find the following statements:

(1) Ax, = 5r Ax,
(2) 99Xy (117) = 2k gXo(‘r) )

(3) X, = 2% [MXO + (Qk - 1)b] )

(4) Ug(—k = 2% 0%(—0 ,

(5) GXk(fL') = ok [GXO(.’L‘) — 1] +1 ; ax, << b.

Proof. The relations (1), (2), (3), (4) and (5) can be easily obtained from Lemma
3.1, Lemma 3.2, and the equations (3.3), (3.4), (3.5), (3.6).

4. Y-Folding of a rectangular distribution and its properties

According to the presented definitions, lemmas, propositions and corollary in
section 3, we will define the Y-Folding with respect to the R(0, ﬁ) distribution,
which is equivalent to the R(a,b) distribution. We will give some results with re-
spect to the Y-Folding, which are similar to the discussed previous results with
respect to the X-Folding. According to this mentioned similarity, here we omit the
proofs.
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Definition 4.1. The Y-Folding on the R(O,ﬁ) distribution is the map
v+ R? = R? such that:

(z,2py —y)  + 0<y<p,
(4.1) Fy(z,y) = ¢ (2,9) D opy <y <5
0 : otherwise

where py is the corresponding mean of R(0, ﬁ) distribution.

Definition 4.2. A set of singular points of the Y-Folding Fy on R(0, ;) is
denoted by Y Fy and it is defined by Y. Fy = {(x,uy) € R?* : x € [a,b]}.

Definition 4.3. Let ay, = W_la) and let py, be the corresponding mean of
R(ay,, 7=) distribution k = 0,1,2,3,... . The sequence {Fy,}3>, of the Y-
Folding on the R(0, ;) distribution is deﬁned by:
(.2 py, —y) 1 ay, Sy <py,
(42) FYk (x,y) = ('r’ y) by, <Y < ﬁ
0 : otherwise

with > Fy, = {(z,py,) € R? : x € [a, ]} as a corresponding set of singular points
of Fyk .

Lemma 4.1. Let {Fy, }7°, be a sequence of the Y-Folding on the R(0, )dzstmbutwn
Then the sequence of the corresponding areas {Ay, }7>, of {Fyk}k:O has the fol-

lowing properties:
(1) Ay, = Fy, (Ay,_,) = 55, k=1,2,3, ..., with Ay, =1,

(2) the sequence {Ay, }72, is a monotone decreasing sequence of areas,

(3) hmk_,oo Ayk =0 and E;O:I Ayk = AYO .

Lemma 4.2. Let Y =Y} be a continuous random variable which has the R(0, ﬁ)
distribution with the minimum value zero in Y-azxes. Apply a sequence of Y-Folding
{Fy,}2, defined on the R(0, ) distribution, then we get on a sequence of the
corresponding minimum values {ay, }7>, = {Qk( },C o of the generated intervals
on Y-azes.

Proposition 4.1. Let' Y =Y,y be a continuous random variable which has the
R(0, 3= a) distribution with the minimum value zero in Y-axes. Applying a sequence

of Y-Folding {Fy, };2, defined on the R(0, 1) distribution. Then, a sequence of
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continuous random variables {Y}22, of the k-th Y-Folding Fy, can be generated
with the following properties:
(1) Fach Yy, k = 0,1,2,3,..., has rectangular distribution on the corresponding
interval (ay, , ﬁ) ,k=0,1,2,3,... , and the probability density function is given
by the following closed form:

2b—a) : ye€lay, ;2]
(4.3) 9y, (y) =
0 : otherwise

(2) the mean py, of Yi; k=0,1,2,3,..., is given by:

2k+1 -1

4.4 =—
( ) Ky 2k+1(b7 a) ’

k=0,1,2,3,...,

(8) the variance of Yi.; k=0,1,2,3,..., is given by:

1 1
4.5 Y = 5 :k=0,1,2,3,...
( ) O-Yk 22]€ 12(()-&)2 ’ ) Ly Hy Iy )

(4) the cumulative distribution function of Yy, k =0,1,2,3,..., is given by:

0 : y < ay,
(4.6) Gy,(y)={ 2"b—ay+ @2 —1) = ay, <y< X
1 TP

(5) the moment-generating function of Yy, k =0,1,2,3, ..., is given by:

eﬁt _eavy t
(4.7) My, (t)— 1t #0,
(3=2 —avy)t
(6) the characteristic function of the random variable Yy, k =0,1,2,3,..., is given

by:

(4.8) Uy, () = —5——, [t]|#0, i=v-1.

Proposition 4.2. Let {Y};}7° , be a generated sequence of continuous random vari-
ables of the sequence {Fy, }72 of the k-th X-Folding, where Y =Yy is the R(0, ;)
variable, and let {Ay, }72, be a sequence of the corresponding areas. Then, for
k=0,1,2,..., we can find the following statements:



114 S. A. El-Shehawy and M. Basher

(3) Py (ay, <Y <35 )= Py, (ay, <Y <35 ),

(4) for any two real constants ¢ and d, Py (¢c<Y <d) =5t Py, (c<Y <d).

Corollary 4.1. Let {Y3}32, be a generated sequence of continuous random vari-
ables of the sequence {Fy, };2, of the k-th Y-Foldings, where Y =Yy is the R(0, 7-)
variable, and let {Ay, }72, be a sequence of the corresponding areas. Then, for
k=0,1,2,..., we can find the following statements:

(1) Ay, = 3¢ Ay,

(2) 9vi (v) = 2" g%, (v) ,

(3) ivi = 3 [ve + 5521,

(4) 0%, = 5r 0%,

(8) Gy, (y) =2 [Gy, (y) =1+ 1 ;5 ay, <y < 425 -

5. Application, [11]

Let the continuous random variable X denote the current measured in a thin
copper wire in milliamperes "mA”. Assume that the range of X in the interval
[0,20mA], and assume that the probability density function of X is g(X) = 0.05
for 0 < x < 20. It is assumed that g(X) = 0.05 whenever it is not specially defined.
For the copper current measurement, the cumulative distribution function of X is
given by

0 : <0
G(x) = 005z : 0<ax<20
1 : 20< x

It is clear that the variable X has the R(0,20) distribution with mean pu = 10mA,
variance 02 = 33.33mA? and standard deviation ¢ = 5.77mA . Notice that in
the definition of G(x) any ”<” can be changed to ” < 7 and vice versa. That is,
G(z) can be defined as either 0.05z or 0, and G(z) can be defined as either 0.05z
or 1 at the end-point = 20. Apply a sequence of the X-Folding on the R(0,20)
distribution, we get on a thin copper wire with high resistance.
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Figure 3 illustrates the corresponding generated probability density functions by ap-
plying Fx,, Fx,, Fx,, Fx,, Fx, iteratively in the X-direction on the given R(0, 20)
distribution.

A
Exy (x)
(18.75,0.8) | K20,0.8)
1 1
1 1
1 |
1 |
17.5.0.4) 1 k20.0.4)
1 1 1
(15,0.2)f : : :(20,0.2)
10,0.1 1 — 1(20,0.1)
(0,0.05) d T (20,0.5)
— >
& & = = '

Figure 3: Corresponding Probability density functions of the X-Folding for
the R(0,20) distribution.

The probability that a current measurement is less than 10mA can be obtained as

1
Px (X <10) = 5 Py, (X <10)=05; k=0,1.23,..,

the probability that a measurement of current is between 5 and 10mA is
1
Px (5<X<10):?PX,€ (b<X<10)=025; k£=0,1,2,3,...,
and also the probability that a measurement of current is between 5 and 15mA is
1
Px (5<X<15):2—,CPX,c 5<X<15)=05; k£=0,1,2,3,....

All results in section 3 can be obtained with respected to the R(0,20) distribution
by replacing (a,b) by (0, 20).

Conclusion

We defined the foldings in X-direction and in Y-direction which are denoted
by the X-Folding and the Y-Folding respectively. We applied this folding on the
area Pla < X < b), where X has R(a,b) distribution with the parameters a,b.
A family of the corresponding rectangular probability distributions is generated.
Some closed forms of the corresponding start-points, probability density functions,
cumulative distribution functions, means, variances, moments-generating functions
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and characteristic functions of the applied foldings in each direction were derived.
Some properties of the generated areas from the used sequence of foldings were
discussed. We obtained a recurrence relation to calculate the probability either by
the original rectangular or by each of a generated sequence of distributions. We
presented a physical application of the defined folding. Our future work will be
devoted to applying the folding on other probability distribution and also we will
tray to illustrate iteratively folding in the two directions. Also, we will look for
general interesting continuous probability distributions.
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