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Abstract. Let M and X be right R-modules. We introduce several modules relative to

the class of B(M,X) and we investigate relation among these modules. In this note, we

show if M is X-⊕-supplemented such that M = M1⊕M2 implies M1 and M2 are relatively

B-projective, then M is an X-H-supplemented module.

1. Introduction

Throughout this paper, R will be an associative ring with identity, and all mod-
ules are unitary right R-modules. A submodule K ofM is denoted by K ≤M . The
notation N ≤⊕ M means that N is a direct summand of M . A submodule K of
M is called essential(or large) in M (denoted by K ≤e M), if K ∩ L ̸= 0 for every
nonzero submodule L ofM , and a submodule K ofM is called small inM (denoted
by K ≪ M), if N +K ̸= M for any proper submodule N of M . A module M is
called hollow if every proper submodule ofM is small inM . Let N be a submodule
of M , a supplement of N in M is a submodule K of M minimal with respect to the
property M = N +K, equivalently, M = N +K and N ∩K ≪ K. Following [14],
M is called supplemented if every submodule of M has a supplement in M . M is
called a lifting module or (D1)-module if for every submodule A of M there exists
a decomposition M = M1 ⊕M2 such that M1 ≤ A and A ∩M2 ≪ M2. Following
[11], M is called ⊕-supplemented if every submodule of M has a supplement that
is a direct summand of M and M is called H-supplemented if for every submodule
A of M there is a direct summand D of M such that M = A+X holds if and only
if M = D +X. H-supplemented modules are ⊕-supplemented [11, A.2]. Suppose
N ⊆ K are submodules of M , N is said to be a cosmall submodule of K in M if
K/N ≪ M/N(denoted by N ≤cs K). A submodule N of M is coclosed in M if
it has no proper cosmall submodules in M(denoted by N ≤cc M). N is called a
coclosure of K in M , if N ≤cs K and N ≤cc M .
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Recall that a module M has the Summand Intersection Property (SIP) if the inter-
section of any two direct summands of M is again a direct summand (see [6]) and
M has the Summand Sum Property (SSP) if the sum of any two direct summands
of M is again a direct summand (see [5]). Let M be a module, a submodule N of
M is called fully invariant if for every h ∈ EndR(M), h(N) ⊆ N .
Supplemented and lifting modules are worthy of study in module theory since they
are dual of complemented and extending modules, and there has been a great deal of
work on lifting modules by many authors. Supplemented modules, lifting modules
are also studied in [11] and [14].

Let M and X be modules. Lopez-Permouth, Oshiro and Tariq Rizvi in [10],
defined the family

A(M,X) = {A ≤M | ∃Y ≤ X,∃f ∈ Hom(Y,M), f(Y ) ≤e A}

They studied extending, quasi-continuous, or continuous modules relative to
this class.
In [8], D. Keskin and A. Harmanci dualized the class A(X,M) and defined the
family

B(M,X) = {A ≤M | ∃Y ≤ X,∃f ∈ Hom(M,X/Y ),Kerf/A≪M/A}

They considered the following conditions:

B(M,X)-(D1): For every submodule A ∈ B(M,X), there exists a direct summand
A∗ ≤⊕ M such that A/A∗ ≪M/A∗.
B(M,X)-(D2): For any A ∈ B(M,X), if B ≤⊕ M andM/A ∼= B implies A ≤⊕ M .
B(M,X)-(D3): For any A ∈ B(M,X) and B ≤⊕ M , if A ≤⊕ M and M = A + B
then A ∩B ≤⊕ M .
They callM is X-lifting, X-quasi-discrete and X-discrete, respectively, ifM satisfies
B(M,X)-(D1), B(M,X)-(D1) and B(M,X)-(D3), B(M,X)-(D1) and B(M,X)-
(D2).
Let {Xλ | λ ∈ Λ} be a family of submodules of a module M with Xλ ∈ B(M,X),
Σλ∈ΛXλ is called an X-local summand ofM , if Σλ∈ΛXλ is direct and Σ⊕λ∈FXλ ≤⊕
M for every finite subset F ⊆ Λ.
Let X and M be R-modules. Following [8], an R-module N is called B(M,X)-
projective if for any submodule A of M with A ∈ B(M,X), any homomorphism
ϕ : N −→ M/A can be lifted to a homomorphism ψ : N −→ M . Two R-modules
M1 and M2 are called relatively B-projective if M1 is B(M2, X)-projective and M2

is B(M1, X)-projective.
Let A and P be submodules of M with P ∈ B(M,X). P is called an X-supplement
of A if M = A + P and A ∩ P ≪ P . The module M is called X-supplemented if
every submodule N of M with N ∈ B(M,X) has a X-supplement in M . Let X be
an R-module. A non-zero module M is X-hollow, if for any proper submodule K
of M with K ∈ B(M,X), K ≪M .
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In this paper, we consider H-supplemented and ⊕-supplemented relative to this
class.

Therefore we define X-H-supplemented, X-⊕-supplemented, and X-FI-lifting mod-
ules. M is called X-H-supplemented if for any A ∈ B(M,X) there exists a direct
summand D of M such that M = A + Y if and only if M = D + Y . M is called
X-⊕-supplemented if every N ∈ B(M,X) has an X-supplement that is a direct
summand of M . A module M is called X-FI-lifting if for every fully invariant sub-
module A with A ∈ B(M,X) there exists a direct summand N of M such that
A/N ≪ M/N . It is easy to see that M is H-supplemented(⊕-supplemented) if
and only if M is M -H-supplemented(M -⊕-supplemented) if and only if M is X-H-
supplemented(X-⊕-supplemented) for every module X. Clearly X-hollow modules
are X-⊕-supplemented and X-⊕-supplemented modules are X-supplemented.

In Section 2, we will give some properties of X-⊕-supplemented and X-H-
supplemented modules. We investigate general properties of this modules, relation
of them with other modules. We give a condition for an X-⊕-supplemented module
to be X-H-supplemented (see Proposition 2.18).

In Section 3, we define and investigate a generalization of X-H-supplemented
modules.

2. Main results

A moduleM is called X-supplement bounded, if it is X-supplemented and every
proper X-supplement submodule of M is contained in a nontrivial fully invariant
submodule belongs to the class B(M,X).

Lemma 2.1. Let M be an X-supplemented module, then for every submodule K
of M , M/K is X-supplemented.

Proof. Simple to check. 2

Proposition 2.2. Let M be an X-supplemented module such that B(M,X) is
closed under taking arbitrary intersection. Then M is X-supplement bounded if
and only if every proper coclosed submodule K of M is cosmall in a fully invariant
submodule Y of M with Y ∈ B(M,X).

Proof. Assume M is X-supplement bounded. Let K ≤cc M be proper. Let Y
be the intersection of fully invariant submodules in B(M,X) containing K. Then
Y ∈ B(M,X) is a fully invariant submodule of M . By Lemma 2.1, let L/K be
the X-supplement of Y/K in M/K. Then L+ Y = M and L/K ∩ Y/K ≪ M/K.
Suppose L ̸= M , by [8, Lemma 2.2], L ∈ B(M,X). Since L is an X-supplement
submodule of M , then there exists a fully invariant submodule S ∈ B(M,X) such
that S ̸= M and L ⊆ S. So L + Y ⊆ Y ̸= M , a contradiction. Therefore L = M
and hence K ≤cs Y in M . The converse is trivial. 2

Proposition 2.3. Let M be X-supplement bounded such that B(M,X) is closed
under taking arbitrary intersection. If every submodule of M has a coclosure, then
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M is X-H-supplemented if and only if M is X-FI-lifting.

Proof. The necessity is clear. For the sufficiency assume M is X-FI-lifting. Let
Y ≤ M and Y ̸= M . Since Y has a coclosure, there exists a submodule K of
M such that K ⊆ Y , Y/K ≪ M/K and K ≤cc M . Since M is X-supplement
bounded there exists a fully invariant submodule B ∈ B(M,X) with K ≤ B and
B/K ≪ M/K by Proposition 2.2. Since M is X-FI-lifting, there exists a direct
summand D of M such that D ≤ B and B/D ≪ M/D. Let M = Y + L for some
L ≤M . Then M/K = Y/K + (L+K)/K = (L+K)/K implies that M = L+K.
Then M = L + B and hence M/D = (L + D)/D + B/D = (L + D)/D. Thus
M = L + D. Conversely assume that M = L + D. Then M = L + B. Now
M/K = (L+K)/K +B/K implies that M = L+K and hence M = L+ Y . 2

By analogy with the proof of [13, Proposition 2.5], we have the following propo-
sition.

Proposition 2.4. The following are equivalent for a module M :

(1) M is X-FI-lifting.

(2) Every fully invariant submodule N of M with N ∈ B(M,X) has a supplement
which is a direct summand.

Now we consider the X-⊕-supplemented module;

Proposition 2.5. Let M be a nonzero module and let U be a fully invariant sub-
module of M with U ∈ B(M,X) such that M = U⊕V . If M is X-⊕-supplemented,
then V is X-⊕-supplemented.

Proof. Suppose that M is X-⊕-supplemented. Let L ∈ B(M,X) be a submod-
ule of M which contains U . There exist submodules N and N ′ of M such that
M = N ⊕ N ′, M = L + N , and L ∩ N is small in N and N ∈ B(M,X).
By [8, Lemma 2.2], L/U ∈ B(M/U,X) and it is clear that (N + U)/U is a X-
supplement of L/U in M/U and by [8, Lemma 3.5], (N + U)/U ∈ B(M/U,X).
Since U be a fully invariant submodule of M , U = (U ∩ N) ⊕ (U ∩ N ′). Thus,
(N + U) ∩ (N ′ + U) ≤ (N + U + N ′) ∩ U + (N + U + U) ∩ N ′. Hence,
(N + U) ∩ (N ′ + U) ≤ U + (N + U ∩ N + U ∩ N ′) ∩ N ′. It follows that
(N+U)∩(N ′+U) ≤ U and ((N+U)/U)⊕((N ′+U)/U) =M/U . Then (N+U)/U
is a direct summand of M/U . Consequently, M/U is X-⊕-supplemented. 2

Theorem 2.6. Any finite direct sum of X-⊕-supplemented modules is X-⊕-
supplemented.

Proof. Let M =M1 ⊕M2 where M1 and M2 are two X-⊕-supplemented modules.
Let N ∈ B(M,X), we have N +M2 =M2 ⊕ [(N +M2) ∩M1] and (N +M2) ∩M1

is a submodule of M1. Since N ∈ B(M,X), N +M2 ∈ B(M,X) by [8, Lemma
3.5 and 2.2]. By [12, Lemma 3.1], (N +M2) ∩M1 ∈ B(M1, X). Since M1 is X-
⊕-supplemented, there exists a direct summand K1 of M1 with K1 ∈ B(M1, X)
such that [(N +M2) ∩M1] +K1 = M1 and (N +M2) ∩K1 ≪ K1. By [8, Lemma
3.5 and 2.2] and [12, Lemma 3.1], (N +K1) ∩M2 is a submodule of M2 such that
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(N + K1) ∩M2 ∈ B(M2, X), thus there exists a direct summand K2 of M2 with
K2 ∈ B(M2, X) such that [(N +K1) ∩M2] +K2 =M2 and (N +K1) ∩K2 ≪ K2.
Let π : M −→ M1 be projection along M2. Since K1 ∈ B(M1, X), by [8, Lemma
2.2(4)], K1⊕M2 = π−1(K1) ∈ B(M,X). SinceM = K1+M1+M2, by [12, Lemma
3.1], K1 = (K1⊕M2)∩M1 ∈ B(M,X). Applying the same argument, we have K2 ∈
B(M,X). Let K = K1 ⊕K2, then K is a direct summand of M and by [3, Lemma
3.4], K ∈ B(M,X). Moreover M1 ≤ N +M2 +K1 and M2 ≤ N +K1 +K2. Hence
M = N+K1+K2 = N+K. Since N ∩(K1+K2) ≤ (N+K1)∩K2+(N+K2)∩K1,
thus N ∩ (K1 +K2) ≤ (N +K1) ∩K2 + (N +M2) ∩K1. As (N +M2) ∩K1 ≪ K1

and (N +K1) ∩K2 ≪ K2, N ∩K ≪ K. So M is X-⊕-supplemented. 2

LetX andM be R-modules. We call a moduleM completely X-⊕-supplemented
if every direct summand N of M with N ∈ B(M,X) is X-⊕-supplemented.

Proposition 2.7. Let M be an X-⊕-supplemented module with B(M,X)-(D3).
Then M is completely X-⊕-supplemented.

Proof. Let N ≤⊕ M and A ≤ N such that N ∈ B(M,X) and A ∈ B(N,X). We
show that A has an X-supplement in N that is a direct summand of N . We have
M = N ⊕N ′ for some submodule N ′ of M . Let π : M −→ N be projection along
N ′. Since A ∈ B(N,X), by [8, Lemma 2.2(4)], A⊕N ′ = π−1(A) ∈ B(M,X). Since
M = A + N + N ′, by [12, Lemma 3.1], A = (A ⊕ N ′) ∩ N ∈ B(M,X). Since M
is X-⊕-supplemented, there exists a direct summand B of M with B ∈ B(M,X)
such that M = A+B and A ∩B ≪ B. Then N = A+ (N ∩B). Again by Lemma
[12, Lemma 3.1], N ∩ B ∈ B(M,X). Furthermore N ∩ B ≤⊕ M because M has
B(M,X)-(D3). Then A ∩ (N ∩ B) = A ∩ B is small in N ∩ B and by [12, Lemma
3.1], N ∩B ∈ B(N,X). 2

Proposition 2.8. Let M be an indecomposable module. Then M is X-hollow if
and only if M is completely X-⊕-supplemented.

Proof. Let M be completely X-⊕-supplemented. If N ∈ B(M,X) is a proper
submodule of M then there exists an X-supplement A of N such that A is direct
summand of M . By hypothesis we have A =M . Thus N = N ∩M = N ∩A≪M .
Therefore M is X-hollow. Conversely, if M is X-hollow and N ∈ B(M,X) then
N ≪M . Since M ∈ B(M,X), so M is an X-supplement of N in M . 2

Let M be any module. M is called a (D3)-module if whenever M1 and M2 are
direct summands of M with M =M1 +M2, M1 ∩M2 is also a direct summand of
M . Clearly (D3) is B(M,X)-(D3).
In the set B(M,X), if we take X =M , then B(M,X) coincides with the set of all
submodules of M . Therefore we obtain the following corollaries:

Corollary 2.9. Any finite direct sum of ⊕-supplemented modules is ⊕-supplemented.

Proof. See [7, Theorem 1.4]. 2

Corollary 2.10. Let M be a ⊕-supplemented module with (D3). Then M is com-
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pletely ⊕-supplemented.

Proof. See [7, Proposition 2.3]. 2

Corollary 2.11. Let M be an indecomposable module. Then M is hollow if and
only if M is completely ⊕-supplemented.

Proof. See [7, Lemma 2.14]. 2

Example 2.12. (1) Zp∞ is a lifting Z-module and so an X-lifting Z-module for
every Z-module X.

(2) Clearly B(M, 0) = M for any module M . Therefore every module M is 0-
⊕-supplemented (completely 0-⊕-supplemented), this means that the Z-module ZZ
is completely 0-⊕-supplemented. But by Proposition 2.8, for every nonzero module
X, it is not completely X-⊕-supplemented.

(3) Let X be simple projective module and M any module. Then for any
A ∈ B(M,X), A is direct summand of M . Therefore M is X-H-supplemented
module.

(4) If M is a divisible Z-module, then B(M,Z) = ∅, since Hom(M,Zn) = 0.

Lemma 2.13. Let M be an X-⊕-supplemented module with (SIP ). Then every
X-local summand Y of M such that Y ∈ B(M,X) is a direct summand.

Proof. Let Y = Σi∈IYi be an X-local summand of M . Since M is X-⊕-
supplemented, there exists a direct summand K of M such that M = K + Y
and K ∩Y ≪ K such that K ∈ B(M,X). For any finite subset F of I, Y = ⊕i∈FYi
is a direct summand of M , hence Y ∩ K is a direct summand of M since M has
(SIP ). Thus Y ∩K = 0. Therefore M = K ⊕ Y . 2

Proposition 2.14. Let M have the (SSP ) with (D3). Then M has the (SIP ).

Proof. By [2, Lemma 19(2)] 2

Lemma 2.15. If every X-local summand of a module M is a direct summand, then
M has an indecomposable decomposition.

Proof. See [3, Lemma 3.2] 2

Theorem 2.16. Let M be an X-⊕-supplemented module with (SSP ), (D3) and
every X-local summand Y of M such that Y ∈ B(M,X). Then M is a direct sum
of X-hollow modules.

Proof. By Lemma 2.13, Lemma 2.15, M is a direct sum of indecomposable mod-
ules and since M has (D3), therefore M has B(M,X)-(D3), so by Proposition 2.7,
every direct summand of M is X-⊕-supplemented. Therefore M is a direct sum of
indecomposable X-⊕-supplemented modules, which are X-hollow. 2

Remark 2.17. Let M be an X-H-supplemented module such that for every direct
summand A of M with A ∈ B(M,X). Then M is X-⊕-supplemented.

Proposition 2.18. Assume that M is X-⊕-supplemented such that whenever
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M = M1 ⊕ M2 then M1 and M2 are relatively B-projective. Then M is an X-
H-supplemented module.

Proof. Let N ∈ B(M,X), since M is X-⊕-supplemented, there exists a decom-
position M = M1 ⊕M2 such that M = N +M2 and N ∩M2 ≪ M2 such that
M2 ∈ B(M,X). By hypothesis, M1 is B(M2, X)-projective, by [8, Proposition 2.5],
we obtain M = A ⊕ M2 for some submodule A of M such that A ≤ N . Then
N = A⊕ (M2 ∩N). Let Y ≤M with M = N + Y . Then M = A+ (M2 ∩N) + Y .
Since M2 ∩N is small in M2 and so is small in M , M = A+Y . Hence M = N +Y
if and only if M = A+ Y . Thus M is X-H-supplemented module. 2

Lemma 2.19. For a submodule U of M , the following are equivalent:

(1) there is a direct summand Y of M with Y ⊆ U and U/Y ≪M/Y ;

(2) there is a direct summand Y ⊆ M and a submodule L of M with Y ⊆ U ,
U = Y + L and L≪M ;

Proof. See [4, 22.1]. 2

Let X and M2 be R-modules. Following [12], an R-module M1 is called B(M2, X)-
cojective if for any submodule A of M2 with A ∈ B(M2, X), any homomorphism
ϕ : M1 −→ M2/A, there exist decompositions M1 = M ′

1 ⊕M ′′
1 , M2 = M ′

2 ⊕M ′′
2

and homomorphisms ϕ1 : M ′
1 −→ M ′

2, ϕ2 : M ′′
2 −→ M ′′

1 such that ϕ2 is onto,
πϕ1 = ϕ |M ′

1
and ϕϕ2 = π |M ′′

2
, where π :M2 −→M2/A is the natural epimorphism.

Two R-modules M1 and M2 are called relatively B-cojective if M1 is B(M2, X)-
cojective and M2 is B(M1, X)-cojective.

Proposition 2.20. Assume that M is X-⊕-supplemented such that whenever M =
M1 ⊕M2 then M1 and M2 are relatively B-cojective. Then M is X-lifting.

Proof. Let A ∈ B(M,X). Then A has an X-supplement M2 which is a direct
summand of M , M = M1 ⊕M2. Then by hypothesis, M1 is B(M2, X)-cojective,
sinceM = A+M2, by [12, Proposition 3.2], we haveM = A′⊕M ′′

1 ⊕M ′
2 = A′+M2,

A′ ≤ A, M ′′
1 ≤M1, M

′
2 ≤M2. Then A = A′+(A∩M2). Thus, since A∩M2 ≪M2,

Now from Lemma 2.19, M is an X-lifting module. 2

3. X-H-cofinitely supplemented

A submodule N of M is called cofinite in M if the factor module M/N is
finitely generated. A module M is called H-cofinitely supplemented if for every
cofinite submodule A of M , there exists a direct summand D of M such that
M = A+X holds if and only if M = D+X. Clearly H-supplemented modules are
H-cofinitely supplemented. On the other hand, every finitely generated H-cofinitely
supplemented module is H-supplemented.

We call M is called X-H-cofinitely supplemented if for cofinite A ∈ B(M,X)
there exists a direct summand D of M such that M = A + Y if and only if
M = D+Y . Z-module Q has no proper cofinite submodule, so it is X-H-cofinitely-
supplemented. By definition every X-H-supplemented is X-H-cofinitely supple-



44 Yahya Talebi and Mehrab Hosseinpour

mented.
Now we have the following hierarchy;

X-lifting=⇒ X-H-supplemented=⇒ X-H-cofinitely-supplemented

The moduleM is called duo module, if every submodule ofM is fully invariant.
M is called distributive if N ∩ (L +K) = (N ∩ L) + (N ∩K) and N + (L ∩K) =
(N + L) ∩ (N +K) for every submodules N ,K,L of M .

Example 3.1. Let p be any prime number. Let M denote the Z-module Q ⊕
(Z/ZP ). Let L be any cofinite submodule of M . Hence Q/(Q ∩ L) is finitely
generated. Thus Q ≤ L. It follows that L = Q⊕L∩(Z/ZP ). Then L = Q or L =M .
So, M is H-cofinitely supplemented, then M is X-H-cofinitely supplemented.

Now we consider the X-H-cofinitely supplemented module;

Theorem 3.2. Let M be a module. The following are equivalent:
(1) M is X-H-cofinitely supplemented module;
(2) For each cofinite submodule Y ∈ B(M,X) there exists a direct summand D of
M such that (Y +D)/D ≪M/D and (Y +D)/Y ≪M/Y ;
(3) For each cofinite submodule Y ∈ B(M,X) there exists L ≤ M and a direct
summand D of M such that L/Y ≪M/Y , L/D ≪M/D.

Proof. (1) =⇒ (2) Let Y ≤ M be cofinite. By assumption there exists a direct
summand D of M such that M = Y + L holds if and only if M = D + L. Let
(Y +D)/D+L/D =M/D for some submodule L ofM containingD. So, Y +L =M
and hence D + L = M , if follows that L = M . Thus (Y + D)/D ≪ M/D. The
second part is the same.
(2) =⇒ (3) Let Y ∈ B(M,X) be cofinite. Then there exists a direct summand D of
M such that (Y +D)/D ≪M/D and (Y +D)/Y ≪M/Y . Now take L = Y +D.
(3) =⇒ (1) Let Y ∈ B(M,X) be cofinite. Then there exist a submodule L of M
and a direct summand D of M such that both Y and D are cosmall submodules of
L in M . It is easy to see that M = A+D if and only if M = A+ Y for all A ≤M .
Thus M is X-H-cofinitely supplemented. 2

Theorem 3.3.
(1) Let M be an X-H-cofinitely supplemented module and L a submodule of M . If
for every direct summand K of M , (L +K)/L is a direct summand of M/L then
M/L is X-H-cofinitely supplemented.
(2) Let M be an X-H-cofinitely supplemented module with the (SSP ). Then every
direct summand of M is X-H-cofinitely supplemented module.
(3) Let M be an X-H-cofinitely supplemented distributive module. Then M/N is
X-H-cofinitely supplemented for every submodule N of M .

Proof. (1) Let N/L ∈ B(M/L,X) be cofinite where N is a cofinite submodule of
M and L ⊆ N , then by [8, Lemma 2.2], N ∈ B(M,X). Since M is X-H-cofinitely
supplemented, for every cofinite N ∈ B(M,X), there exists a direct summand
D of M such that M = N + Y if and only if M = D + Y . By hypothesis,
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(D + L)/L is a direct summand of M/L. Then M/L = N/L + A/L if and only
if M/L = (D + L)/L + A/L for every A/L ≤ M/L so M/L is X-H-cofinitely
supplemented.

(2) Assume that M is X-H-cofinitely supplemented and M has the summand sum
property. Let N be a direct summand of M . We show that N is X-H-cofinitely
supplemented. Let M = N ⊕ K for some submodule K of M . Assume that A
is a direct summand of M . Since M has the summand sum property, A +K is a
direct summand of M . Let M = (A+K)⊕B for some submodule B of M . Then
M/K = (A +K)/K ⊕ (B +K)/K. Hence M/K is X-H-cofinitely supplemented
by (1) and so N is X-H-cofinitely supplemented.

(3) Let D be a direct summand of M . Then M = D ⊕D′ for some submodule D′

of M . Now M/N = [(D+N)/N ] + [(D′ +N)/N ]. Note that N = N + (D ∩D′) =
(N +D)∩ (N +D′) by distributive of M . So M/N = [(D+N)/N ]⊕ [(D′+N)/N ].
By (1), M/N is X-H-cofinitely supplemented. 2

Theorem 3.4. Let M be a duo module. Then M has the (SIP ) and the (SSP ).

Proof. See [1, Theorem 3.5] 2

As a result of Theorem 3.3 and Theorem 3.4, we can obtain the following corol-
lary;

Corollary 3.5. Let M be an X-H-cofinitely supplemented duo module. Then every
direct summand of M is X-H-cofinitely supplemented module.

Theorem 3.6. Let M = M1 ⊕M2 be a duo module and for any A ∈ B(M,X),
M = A +Mi (i = 1, 2). If M1 and M2 are X-H-cofinitely supplemented modules,
then M is X-H-cofinitely supplemented.

Proof. Assume M1 and M2 are X-H-cofinitely supplemented modules. Let
L ∈ B(M,X) be cofinite. L = (L∩M1)⊕ (L∩M2). Clearly, L∩M1 and L∩M2 are
cofinite submodules of M1 and M2, then by [12, Lemma 3.1], L ∩M1 ∈ B(M1, X)
and L ∩M2 ∈ B(M2, X). Since M1, M2 are X-H-cofinitely supplemented, there
exists a direct summand A1, A2 of M1, M2 such that M1 = A1 + Y if and only if
M1 = (L∩M1) + Y for any submodule Y of M1 that L∩M1 ∈ B(M1, X) and also
M2 = A2 + Y if and only if M2 = (L ∩M2) + Y for any submodule Y of M2 that
L∩M2 ∈ B(M2, X). It is clear until that show that M = (A1⊕A2)+Z if and only
if M = L+ Z for any submodule Z of M . 2

Corollary 3.7. Let M =
⊕n

i=1Mi be a finite direct sum of duo modules and for
any A ∈ B(M,X), M = A + Mi (i = 1, ..., n). If every Mi is X-H-cofinitely
supplemented modules, then M is X-H-cofinitely supplemented.

Finally, we get the following results as corollaries of Theorem 3.3, Corollary 3.5
and Corollary 3.7.

Corollary 3.8([9, Theorem 2.1]). (1) Let M be an H-cofinitely supplemented mod-
ule and L a submodule of M . If for every direct summand K of M , (L+K)/L is
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a direct summand of M/L then M/L is H-cofinitely supplemented.
(2) Let M be an H-cofinitely supplemented module with the (SSP ). Then every
direct summand of M is H-cofinitely supplemented module.
(3) Let M be an H-cofinitely supplemented distributive module. Then M/N is H-
cofinitely supplemented for every submodule N of M .

Corollary 3.9[9, Corollary 2.3]. Let M be an H-cofinitely supplemented duo mod-
ule. Then every direct summand of M is H-cofinitely supplemented module.

Corollary 3.10. Let M =
⊕n

i=1Mi be a finite direct sum of duo modules. If every
Mi is H-cofinitely supplemented modules, then M is H-cofinitely supplemented.
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