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Abstract. In this paper, we introduce and study the concept of “strongly t-linked ex-

tensions”, which is a stronger version of t-linked extensions of integral domains. We show

that for an extension of Prüfer v-multiplication domains, this concept is equivalent to that

of “w-faithfully flat”.

1. Introduction

Let R be an integral domain with quotient field K. Then for any nonzero (frac-
tional) ideal I set I−1 := {x ∈ K | xI ⊆ R} and an ideal J of R is called a GV-ideal,
denoted by J ∈ GV (R), if J is a finitely generated ideal of R with J−1 = R.

Let R be a subring of the integral domain T . Following [7], we say that T is
t-linked over R if J ∈ GV (R) implies JT ∈ GV (T ). As pointed out in [1], an
extension R ⊆ T of Krull domains is t-linked if and only if it satisfies Samuel’s PDE
(Pas d’éclatement) or NBU (No blowing up) condition, i.e., for a height one prime
P ∈ Spec(T ), the set of prime ideals of T , we have ht(P ∩R) ≤ 1. Anderson et al.
in [1] showed that if T is t-linked over R, then the map [I] 7→ [(IT )t] gives a homo-
morphism Clt(R) → Clt(T ) of the t-class groups. Recall from [8] that an integral
domain R is called t-linkative if each overring T of R is t-linked over R, equivalently,
if every (nonzero) ideal of R is w-ideal ([13]). Examples of t-linkative domains are
Prufer domains and domains with Krull dimension one ([7, Corollary 2.7]). In [13],
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module-theoretic characterizations of t-linked extensions and t-linkative domains
are given. In [16], a stronger version of the PDE condition for an extension of Krull
domains was introduced and studied. In this paper, we introduce and study the
concept of “strongly t-linked extensions”, which is a stronger version of t-linked
extensions of integral domains. In fact, this is a continuous work on the project of
studying some properties over Prüfer v-multiplication domains ([12, 14]).

We first introduce some definitions and notations. Let R be an integral domain
with quotient field K. Let I be a nonzero fractional ideal I of R. Then Iv :=
(I−1)−1, It :=

∪
{Jv|J ⊆ I is a nonzero finitely generated ideal}, and Iw := {x ∈

K | Jx ⊆ I for some J ∈ GV (R)}. We say that I is a t-ideal (resp., w-ideal) if
I = It (resp., I = Iw). A fractional ideal I of R is said to be t-invertible (resp.,
w-invertible) if (II−1)t = R (resp., (II−1)w = R). It is known that a fractional
ideal I is t-invertible if and only if I is w-invertible. We say that a fractional ideal
I of R is of w-finite type if Iw = Jw for some finitely generated ideal J of R. A
maximal t-ideal (resp., w-ideal) is an ideal of R maximal among proper integral t-
ideals (resp., w-ideals) of R. Let t-Max(R) (resp., w-Max(R)) be the set of maximal
t-ideals (resp., w-ideals). Then it is easy to see that t-Max(R) = w-Max(R); if R is
not a field, then t-Max(R) ̸= ∅. An integral domain R is a Prüfer v-multiplication
domain (PvMD) if every nonzero finitely generated ideal of R is t-invertible. It is
well known that an integral domain R is a PvMD if and only if Rp is a valuation
domain for any prime t-ideal p of R; if a domain R is a PvMD, then t = w; if T
is t-linked over a PvMD R, then T is w-flat over R (The definition of w-flatness
will be reviewed later). Let M be a module over the Prüfer domain R. Then it is
well known that M is torsion-free if and only if M is flat. From this result it also
follows that a finitely generated module over a valuation domain is torsion-free if
and only if it is free, since a finitely generated module over a local ring is free or,
equivalently, projective, if and only if it is flat.

Let M be a module over an integral domain R. Following [13] and [19], M is
said to be GV-torsion-free (or co-semi-divisorial) if {x ∈M | (annR(x))w = R} = 0;
equivalently, if whenever Jx = 0 for some J ∈ GV (R) and x ∈ M , we have that
x = 0. M is called GV-torsion (or w-null) if {x ∈ M | (annR(x))w = R} = M .
We call an R-module M semi-divisorial (or a w-module) if it is torsion-free and
M = WR(M), where the w-envelope of M is defined as WR(M) =

∩
P∈w-Max(R)

MP ,

where the intersection is taken within K⊗RM . In particular, the domain R itself is
semi-divisorial as an R-module. Any R-linear map u :M → N between torsion-free
R-modules induces a mapWR(u) :WR(M) →WR(N), i.e., WR may be viewed as a
covariant functor on torsion-free R-modules. Let M,N be semi-divisorial modules
over R. Suppose that f :M → N is an R-homomorphism and fP :MP → NP is an
isomorphism for all P ∈ w-Max(R). Then it is easy to see that f is an isomorphism.

Let R be a PvMD. Then for any p ∈ w-Spec(R) the ring Rp is a valuation
domain, hence, an Rp-module is Rp-flat if and only if it is torsion-free. Since Rp is
a flat R-module, any Rp-module that is Rp-flat is R-flat. Hence any semi-divisorial
R-module M is an intersection in K ⊗R M of flat R-modules Mp.
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Any undefined terminology is standard, as in [9] or [10].

2. Main results

We begin this section by listing some characterizations of t-linked extensions of
integral domains in the literature.

If R is an integral domain, we set R⟨X⟩ := R[X]Nt , where Nt := {f ∈
R[X] | c(f)t = R}, a multiplicative set in R[X] (c(f) is the ideal of R gener-
ated by the coefficients of f ∈ R[X]). R⟨X⟩ is called the t-Nagata ring of R.

Theorem 2.1. Let R ⊆ T be an extension of domains. Then the following condi-
tions are equivalent.

(1) T is t-linked over R.

(2) If I is a (finitely generated) ideal of R with It = R, then (IT )t = T .

(3) If Q is a prime t-ideal of T with Q ∩R ̸= 0, then (Q ∩R)t ( R.

(4) If Q is a maximal t-ideal of T with Q ∩R ̸= 0, then (Q ∩R)t ( R.

(5) If I and J are t-invertible ideals of R with It = Jt, then (IT )t = (JT )t.

(6) If I is a t-invertible ideal of R, then (IT )t = (ItT )t.

(7) Iw ⊆ (IT )w, for any ideal I of R.

(8) A ∩R is a w-ideal of R for any w-ideal A of T .

(9) (IT )w ∩R is a w-ideal of R for any ideal I of R.

(10) (IT )w ∩R is a w-ideal of R for any finitely generated ideal I of R.

(11) P ∩R is a (prime) w-ideal of R for any prime w-ideal P of T .

(12) T = T ⟨X⟩ ∩ qf(T ), where X is an indeterminate over T .

(13) T is semi-divisorial as an R-module.

(14) Every GV-torsion-free T -module is a GV-torsion-free R-module.

(15) M ⊗R T is a GV-torsion T -module for any GV-torsion R-module M .

Proof. The proof of [7, Proposition 2.1] shows that (1)-(3) are equivalent. For the
equivalences of (2), (4), (5), and (6), See [1, Proposition 2.1]. It was shown in [17,
Proposition 1.2] that (1) and (7)-(11) are equivalent. (1) ⇔ (12). See the proof of
[4, Lemma 3.2]. (1) ⇔ (13) ⇔ (14). See [13, Theorem 9.10]. (14) ⇔ (15). See [23,
Lemma 1.1(2)]. 2

Corollary 2.2. Let R ⊆ T be a t-linked extension of domains and let M be an
R-module. If M ⊗R T is a GV-torsion-free T -module, then M is a GV-torsion-free
R-module.

Proof. This follows from [23, Lemma 1.1(1)] and Theorem 2.1. 2



28 H. Kim and T. I. Kwon

Consider an inclusion of domains i : R ↪→ T . Taking intersections with A, this
inclusion induces a continuous map (for the Zariski topology)

ai : Spec(T ) → Spec(R), Q 7→ Q ∩R,

which does, in general, not restrict to a map w-Spec(T ) → w-Spec(R). If it does,
i.e., if Q ∩ R ∈ w-Spec(R), for all Q ∈ w-Spec(T ), then we say that i is a t-linked
extension.

It was shown in [17, Proposition 1.1] that for an extension R ⊆ T of domains,
if P is a prime ideal of T such that P ∩ R is a w-ideal of R, then Pw ̸= Tw. As a
corollary, for a prime ideal p of R, p is a w-ideal if and only if pw ̸= R. It is easy to
see that if a domain T is semi-divisorial over a domain R and I is a w-ideal of T .
Then I is semi-divisorial over R (cf. [17, Remark 1]).

Let R ⊆ T be an extension of rings. Suppose T is a flat R-module. Then it is
known that if P is a prime ideal of T and write p = P ∩R, then TP is a faithfully flat
Rp-module. Note that if R is a valuation domain, then any nonzero (prime) ideal of
R is w-ideal. Recall that for two local rings (R,mR) and (T,mT ), a homomorphism
ψ : R→ T is called a local homomorphism if ψ(mR) ⊆ mT .

Theorem 2.3. Let i : R ↪→ T be an extension of PvMDs. Then i is a t-linked
extension if and only if the Rp-module TP is (faithfully) flat, for every P ∈ w-
Spec(T ) and p = P ∩R.
Proof. (⇒) If i is a t-linked extension, then p := P ∩ R ∈ w-Spec(R), for all P ∈
w-Spec(T ). Thus Rp is a valuation domain. Since TP is torsion-free over Rp, it is
flat over Rp.

(⇐) If P ∈ w-Spec(T ) and if TP is flat over Rp with p = P ∩ R, then TP
is faithfully flat over Rp since Rp → TP is local. Therefore TP is semi-divisorial
over Rp and ppTP ̸= TP , and so (TP )wp

= TP as an Rp-module (i.e., wp is the
w-operation on Rp) and ppTP ⊆ PP . Note that PP is a prime w-ideal of TP , since
Rp is a valuation domain. We will show that p is a prime w-ideal of R. Suppose
that pw = R. Then (pp)wp

= Rp. Thus we have PP = (PP )wp
⊇ (ppTP )wp

=
((pp)wp

TP )wp
= (TP )wp

= TP (the first equality follows from the remark just
above, while the second equality follows from [20, Proposition 2.8]) as (torsion-free)
Rp-modules, which is a contradiction. Therefore, pw ̸= R. Thus by [21, Proposition
1.1] p is a prime w-ideal of R. 2

The following result provides the first link between the notion of the t-linked
extension and that of a semi-divisorial module.

Proposition 2.4([13, Corollary 9.11]). Let R ⊆ T be a t-linked extension of integral
domains. If M is a semi-divisorial T -module, then M is also semi-divisorial as an
R-module.

If the map ai : w-Spec(T ) → w-Spec(R) is surjective, i.e., if for every P ∈ w-
Spec(R) there exists some Q ∈ w-Spec(T ) with the property that Q ∩R = P , then
we will say that i is a strongly t-linked extension or that T is strongly t-linked over
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R. Thus it is clear to see that a t-linked extension R ⊆ T of domains is a strongly
t-linked extension if and only if the pair (R, T ) satisfies “lying over” property for
prime w-ideals of R and T .

Following [22], an ideal J of a commutative ring R is called a Glaz-Vasconcelos
ideal or a GV-ideal, denoted by J ∈ GV (R), if J is finitely generated and the natural
homomorphism α : R → HomR(J,R), defined by α(r)(a) = ra, ∀r ∈ R, ∀a ∈ J , is
an isomorphism. An R-moduleM is said to be GV-torsion-free if whenever Jx = 0,
for some J ∈ GV (R) and x ∈M , then x = 0.

Now we extend this concept to any module. Let R be a commutative ring with
identity and let M be an R-module. Define r(M) := {x ∈ M | (annR(x))w = R}.
Then r(M) is a submodule of M . It is easy to see that M is GV-torsion-free if
and only if r(M) = 0 and that M/r(M) is GV-torsion-free. Define Mw := {x ∈
E(M) | Jx ⊆ M/r(M) for some J ∈ GV (R)}, where E(M) denotes the injective
envelope (or injective hull) of M . Then it is also easy to see that W (M) = Mw

for any torsion-free R-module M . An R-module M is said to be a w-module if
Mw = M . Let M and N be any modules over any commutative ring R. Then we
define the w-tensor product of M and N as follows: M⊗̂N := (M ⊗R N)w.

The following definitions and proposition are easily derived from [3, 1.4, 1.5
Proposition, 1.6 Proposition]: Let M be an R-module. Then it is clear that the
functor M⊗̂− is right exact. We call M a w-flat R-module if M⊗̂− is exact. Then
M is w-flat if and only ifMp is a flat Rp-module for every p ∈ w-Max(R). M is said
to be w-faithfully flat if it satisfies one of the equivalent conditions of the following
proposition.

Proposition 2.5. Let M be an R-module. Then the following statements are
equivalent:

(1) For all GV-torsion-free semi-divisorial R-modules A,B, and C, the sequence

A
f−→ B

g−→ C is exact if and only if M⊗̂A 1M ⊗̂f−−−−→ M⊗̂B 1M ⊗̂g−−−−→ M⊗̂C is
exact.

(2) M is w-flat and for all GV-torsion-free semi-divisorial R-module N we have
M⊗̂N = 0 if and only if N = 0.

(3) M is w-flat and for all p ∈ w-Max(R) we have (M/pM)w ̸= 0.

(4) For all p ∈ w-Max(R) the Rp-module Mp is faithfully flat.

It is well known that for an extension R ⊆ T of integral domains having the
same quotient field, if T is faithfully flat over R, then R = T . The following result
is the w-theoretic analogue of this result.

Corollary 2.6. Let R ⊆ T be an extension of integral domains having the same
quotient field. If T is w-faithfully flat over R, then R = T .

Proof. Let p ∈ w-Max(R). Then TR\p is Rp-faithfully flat by Proposition 2.5.
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Since TR\p and Rp have the same quotient field, we have that TR\p = Rp. Hence
R =

∩
p∈w−Max(R)

Rp =
∩

p∈w−Max(R)

TR\p ⊇ T ⊇ R, and thus R = T . 2

To address the question of “what is a w-faithfully flat ideal of an integral domain
R?”, we need the following lemma.

Lemma 2.7([19, Theorem 2.6.22]). Let (R,m) be a local ring and let I be a faithfully
flat ideal of R. Then I is a principal ideal, which is also free as an R-module. More
precisely, if a ∈ I \mI, then I = (a).

A nonzero ideal I of R is called a w-cancellation ideal if (IA)w = (IB)w for
nonzero ideals A and B of R implies Aw = Bw. In [6, Corollary 2.4], it was shown
that I is a w-cancellation ideal if and only if I is w-locally principal. The following
result is the w-theoretic analogue of [19, Theorem 2.6.23].

Theorem 2.8. Let R be a domain and let I be a nonzero ideal of R. Then I is
w-faithfully flat if and only if I is w-locally principal.

Proof. Suppose that I is w-faithfully flat and let m be a maximal w-ideal of R.
Then by Proposition 2.5, Im is a faithfully flat ideal of Rm. Hence Im is a principal
ideal by Lemma 2.7.

Conversely, suppose that Im is a principal ideal of Rm for any maximal w-ideal
m of R. Then I is w-flat by the remark before Proposition 2.5. Clearly, Im ̸= mIm,
and hence (I/mI)w ̸= 0. Therefore by Proposition 2.5, I is w-faithfully flat. 2

Now we give an example of a w-faithfully flat, but not w-invertible ideal.

Example 2.9. It is known that a nonzero ideal I of R is w-invertible if and only
if I is of w-finite type and I is w-locally principal. Consider R := Z + XQ[[X]].
Then it is known that R is a two-dimensional Prüfer domain. Let I be an ideal
of R generated by the set { 1

pX}, where p ranges over the set of prime numbers in

Z. Then it is shown in [19, Example 8.6.25] that I is a faithfully flat ideal, which
is not finitely generated. Since R is a Prüfer domain, R is t-linkative, i.e., every
(nonzero) ideal of R is a w-ideal. Therefore by Theorem 2.8, I is a not w-invertible
but w-locally principal ideal of R.

Lemma 2.10. Let R ⊆ T be an extension of domains. If T is a w-faithfully flat
R-module, then (IT )w ∩R = Iw for any ideal I of R.

Proof. Let p be a maximal w-ideal of R. Then we have that (IT ∩R)p = IpTp∩Rp =
Ip (the second equality follows from the fact that Tp is faithfully flat as an Rp-
module). Thus (IT )w ∩R = (IT ∩R)w = Iw. 2

Lemma 2.11. Let R ⊆ T be an extension of domains and let p ∈ w-Spec(R). Then
there is a P ∈ w-Spec(T ) lying over p if and only (pT )w ∩R = p.

Proof. Suppose that there is a P ∈ w-Spec(T ) lying over p. Then we have that
p ⊆ (pT )w ∩R ⊆ Pw ∩R = P ∩R = p. Therefore (pT )w ∩R = p.
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Conversely, suppose that (pT )w ∩R = p. Set S := R \ p. Then (pT )w ∩ S = ∅.
Thus there is a prime w-ideal P of T such that (pT )w ⊆ P and P ∩ S = ∅. Hence
p ⊆ P ∩ R. Let x ∈ P ∩ R. Since P ∩ S = ∅, x ̸∈ S, and so x ∈ p. Therefore
P ∩R = p. 2

Lemma 2.12([19, Theorem 5.2.17]). Let (R,mR) and (T,mT ) be local rings and let
f : R→ T be a homomorphism with f−1(mT ) = mR. Suppose T is a flat R-module.

(1) T is faithfully flat and f is monomorphic.

(2) The map af : Spec(T ) → Spec(R) defined by af(P ) = f−1(P ) is a surjection.

Let T be an R-algebra and M be a T -module. Then it is known that if T is flat
overR andM is flat over T , thenM is flat overR. LetR ⊆ T be a t-linked extension.
We say that (R, T ) satisfies w-GD if (R, T ) satisfies “going down” in the sense that
for p, q ∈ w-Spec(R) with q ⊆ p and let P ∈ w-Spec(T ) with P ∩R = p, there exists
a Q ⊆ P such that Q ∩ R = q. We also define w-dim(R) := sup{ht(p) | p ∈ w-
Max(R)}.

Theorem 2.13. Let R ⊆ T be an extension of rings.

(1) If T is a w-flat R-module, then (R, T ) satisfies w-GD.

(2) If T is a w-faithfully flat R-module, then w-dim(R) ≤ w-dim(T ).

Proof. (1) Let p, q ∈ w-Spec(R) with q ⊆ p and let P ∈ w-Spec(T ) with P ∩R = p.
Consider the extension Rp ⊆ TP . Since Tp is flat over Rp for every ∈ w-Spec(R) and
TP is a quotient ring of Rp, it follows from the above remark that TP is flat over Rp.
Thus by Lemma 2.12, there is a Q ∈ Spec(T ) with Q ⊆ P and QTP ∩ Rp = qRp.
Note that Q ∈ w-Spec(T ) since Q ⊆ P . It follows that Q ∩R = q.

(2) Let p be a maximal w-ideal of R and let ps ⊂ · · · ⊂ p1 ⊂ p be a chain of
prime (w-)ideals of R. By Lemma 2.10 and Lemma 2.11, there is a maximal w-ideal
P of T such that P ∩ R = p. By (1), (R, T ) satisfies the w-GD. Hence there is a
chain of prime (w-)ideals Ps ⊂ · · · ⊂ P1 ⊂ P such that Pi ∩R = pi. It follows that
ht(p) ≤ ht(P ). Therefore w-dim(R) ≤ w-dim(T ). 2

The following result is a connection between strong t-linkedness and w-faithful
flatness among extensions of PvMDs.

Theorem 2.14. Let R ⊆ T be a t-linked extension of PvMDs. Then T is a strongly
t-linked extension over R if and only if T is a w-faithfully flat R-module.

Proof. Assume that T is a strongly t-linked extension over R and let p ∈ w-Spec(R).
Then Tp is torsion-free over the valuation domain Rp, and hence it is flat over Rp.
To prove that Tp is faithfully flat, we have to show that ITp ̸= Tp for every maximal
ideal I of Rp. Note that pp is a unique maximal of Rp. We thus have to show that
pTp ̸= Tp. By assumption, there is a prime ideal P ∈ w-Spec(T ) with P ∩ R = p.
Then clearly pTp ⊆ PTp ̸= Tp (as P ∩ (R \ p) = ∅).
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Conversely, assume that for every p ∈ w-Spec(R), the Rp-module Tp is faithfully
flat. Consider, for the moment, a fixed p ∈ w-Spec(R) and the induced map Rp ↪→
Tp, which is faithfully flat. Since Tp is faithfully flat over Rp, the extension Rp ↪→ Tp
is t-linked, equivalently Tp is semi-divisorial over Rp, and so (Tp)w = Tp. Again
since Tp is faithfully flat over Rp, there exists Q′ ∈ Max(Tp) with Q′ ∩ Rp = pp
([2, I, 3.5, Proposition 9]). We will show that Q′ ∈ w-Spec(Tp). Since Rp is a
valuation domain, pp is a w-prime ideal of Rp. Then by [17, Proposition 1.1],
(Q′)w ̸= (Tp)w = Tp. Thus by [21, Proposition 1.1], we have Q′ ∈ w-Spec(Tp). Set
Q = Q′ ∩ T . Then Q ∈ w-Spec(T ), since T ↪→ Tp is t-linked, with Q ∩R = p. 2

The following result follows immediately from Proposition 2.5 and Theorem
2.14.

Corollary 2.15. Let T be an extension of a PvMD R. Then the following assertions
are equivalent:

(1) T is strongly t-linked over R.

(2) For any GV-torsion-free semi-divisorial R-moduleM , we have thatM⊗̂RT =
0 if and only if M = 0.

In particular, it follows from Corollary 2.15 that the functor T ⊗̂R− is left exact
on GV-torsion-free semi-divisorial R-modules.

Example 2.16. We provide examples of strongly t-linked extensions of domains.

(1) Any faithfully flat extension i : R ↪→ T of PvMDs is strongly t-linked. Indeed,
the fact that i is a t-linked extension follows from the flatness of i and it is
trivial to see that for any p ∈ w-Spec(R) the induced map ip : Rp ↪→ Tp is
faithfully flat.

(2) If i : R ↪→ T is an extension of PvMDs which makes T into a semi-divisorial
R-lattice, then T is strongly t-linked over R. Indeed, since T is semi-divisorial
over R, i is a t-linked extension. On the other hand, for every p ∈ w-Spec(R),
the Rp-module Tp is free of finite rank, hence certainly faithfully flat.

(3) As in [18], we say that an element u ∈ K is w-integral over R if uIw ⊆ Iw
for some nonzero finitely generated ideal I of R. Set Rw := {x ∈ K | x is
w-integral over R}. It is known that Rw is an integrally closed overring of R
(see [18, section 3]); Rw is called the w-integral closure of R. The w-integral
closure Rw of an integral domain R is strongly t-linked over R. Indeed, this
follows from [5, Lemma 1.2 and Corollary 1.4].

The w-tensor product M⊗̂RN of two R-modules M and N can be redefined
as the image under the reflector W of their ordinary tensor product M ⊗R N . If
M and N are torsion-free, then M⊗̂RN = WR(MN), where MN is the image of
M ⊗R N in K ⊗R (M ⊗R N) ∼= (K ⊗R M) ⊗K (K ⊗R N). The w-tensor product
behaves in many ways as the ordinary tensor product of R-modules.
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For (m,n) in M ×N let α(m,n) = 1⊗m⊗ n ∈ K ⊗R (M ×R N). View α as a
map to M⊗̂RN . Let β be the map sending (m,n) to m⊗ n in M⊗̂RN . Because α
is bilinear, there is a commutative diagram

M ×N
α //

β

%%LL
LLL

LLL
LL

M⊗̂RN

M ⊗R N

∃!γ
88

An integral domain R is said to be of w-finite character if every nonzero nonunit
of R belongs to at most finitely many maximal w-ideals of R. The proof of the
following result is easy, and so we omit it.

Lemma 2.17. Let S be a multiplicative set of a domain of w-finite character and
M an R-module. If M is semi-divisorial over R, then MS is semi-divisorial over
RS.

The following proposition summarizes some basic properties of the w-tensor
product.

Proposition 2.18. Let L,M,Mi be torsion-free R-modules. Then:

(1) Given an R-homomorphism f : M → N , there exists a unique R-
homomorphism WR(f) : WR(M) → WR(N) which on M restricts to f . For
g : L→M we have WR(fg) =WR(f)WR(g).

(2) M⊗̂RN is semi-divisorial.

(3) M⊗̂RN has the universal mapping property in the following sense. If L is
semi-divisorial and δ : M ×N → L is R-bilinear, then there exists a unique
R-homomorphism λ :M⊗̂RN → L satisfying λα = δ (with α as above).

(4) If M and N are R-lattices, so is M⊗̂RN .

(5) If M is R-flat, then it is semi-divisorial. If in addition R is of w-finite
character and N is semi-divisorial, then the map γ above is an isomorphism.

(6) If B is an R-algebra andM is a B-module, then there is a B-module structure
on M⊗̂RN which makes γ a B-module homomorphism.

(7) R⊗̂RM =WR(M).

(8) L⊗̂R(M⊗̂RN) ∼= (L⊗̂RM)⊗̂RN .

(9) L⊗̂R(
⊕

iMi) ∼=
⊕

i(L⊗̂RMi).

(10) M⊗̂RN ∼= N⊗̂RM .

(11) Let S be a multiplicative subset of R, a domain of w-finite character. Then
(M⊗̂RN)S ∼=MS⊗̂RS

NS.
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Proof. (2) is clear. (1) and (3) follow from the fact that WR is a reflector functor.
(4) follows from the well-known fact that if M and N are R-lattices, so is MN .

The first assertion of (5) is given in [11]. The second assertion of (5) follows
from [15, Corollary 2 to Proposition 1]. (6) follows from (2) and (3). Assertions (7)
to (10) are easy to prove.

To prove (11), we will establish that there are maps in both directions between
(M⊗̂RN)S and MS⊗̂RS

NS whose composites are clearly the identity maps. First
note that each of the modules involved is semi-divisorial over RS . For (M⊗̂RN)S
this is true by (2) and Lemma 2.17. ForMS⊗̂RS

NS we need only invoke (2) with R
replaced by RS . The existence of the maps we want is now easily established using
(3) and properties of the localizing functor ( )S . 2
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Prüfer v-multiplication domains, Comm. Algebra, 17(1989), 2835-2852.

[8] D. E. Dobbs, E. G. Houston, T. G. Lucas, M. Roitman, and M. Zafrullah, On t-linked
overrings, Comm. Algebra, 20(1992), 1463-1488.

[9] L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Mathematical Surveys
and Monographs, 84, AMS, Providence, RI, 2001.

[10] R. Gilmer, Multiplicative Ideal Theory, Queen’s Papers in Pure and Applied Mathe-
matics; Queen’s University, Vol 90 Kingston, Ontario, 1992.

[11] S. Glaz and W. V. Vasconcelos, Flat ideals. II, Manuscripta Math., 22( 1977), 325-
341.

[12] H. Kim, Kaplansky-type theorems, Kyungpook Math. J., 40(2000), 9-16.



Strongly t-linked Extensions 35

[13] H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra,
36(2008), 1649-1670.

[14] H. Kim and T. I. Kwon, Locally polynomial rings over PvMD’s, Kyungpook Math.
J., 45(2005), 131-135.

[15] M. Orzech, Divisorial modules and Krull morphisms, J. Pure Appl. Algebra, 25(1982),
327-334.

[16] A. Smet and A. Verschoren, The strong (PDE) condition, Quaestiones Mathematicae,
23(2000), 495-505.

[17] F. Wang, w-dimension of domains, II, Comm. Algebra, 29(2001), 2419-2428.

[18] F. Wang, On induced operations and UMT-domains, Sichuan Shifan Daxue Xuebao
Ziran Kexue Ban, 27(2004), 1-9.

[19] F. Wang, Foundations of Commutative Ring Theory, preprint.

[20] F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm.
Algebra, 25(1997), 1285-1306.

[21] F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra,
135(1999), 155-165.

[22] H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean
Math. Soc., 48(2011), 207-222.

[23] X. Zhu, Torsion theory and finite normalizing extensions, J. Pure Appl. Algebra,
176(2002), 259-273.


