참고문헌
- T. Bulboaca, Integral operators that preserve the subordination, Bull. Korean Math. Soc., 32(1997), 627-636.
- T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. N. S., 13(2002), 301-311. https://doi.org/10.1016/S0019-3577(02)80013-1
- W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 2(1952), 169-185.
- S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171. https://doi.org/10.1307/mmj/1029002507
- S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Different. Equations, 56(1985), 297-309. https://doi.org/10.1016/0022-0396(85)90082-8
- S. S. Miller and P. T. Mocanu, Differential subordination, Theory and Application, Marcel Dekker, Inc., New York, Basel, 2000.
- S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48(2003), 815-826. https://doi.org/10.1080/02781070310001599322
- S. S. Miller, P. T. Mocanu and M. O. Reade, Subordination-preserving integral operators, Trans. Amer. Math. Soc., 283(1984), 605-615. https://doi.org/10.1090/S0002-9947-1984-0737887-4
- S. Owa, On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.
- S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077. https://doi.org/10.4153/CJM-1987-054-3
- S. Owa and H. M. Srivastava, Some subordination theorems involving a certain family of integral operators, Integral Transforms Spec. Funct., 15(2004), 445-454. https://doi.org/10.1080/10652460410001727563
- Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Gottingen, 1975.
- H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II , J. Math. anal. Appl., 171(1992), 1-13
- H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II , J. Math. anal. Appl., 192(1995), 673-688. https://doi.org/10.1006/jmaa.1995.1197
- H. M. Srivastava and A. K. Mishra, A fractional differintegral operator and its applications to a nested class of multivalent functions with negative coefficients, Adv. Stud. Contemp. Math., 7(2003), 203-214.