DOI QR코드

DOI QR Code

Metagenomic Analysis of Fungal Communities Inhabiting the Fairy Ring Zone of Tricholoma matsutake

  • Kim, Miae (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Yoon, Hyeokjun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • You, Young-Hyun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Kim, Ye-Eun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Woo, Ju-Ri (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Seo, Yeonggyo (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Lee, Gyeong-Min (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Kim, Young Ja (Korea Environmental Industry & Technology Institute) ;
  • Kong, Won-Sik (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jong-Guk (Department of Life Sciences and Biotechnology, Kyungpook National University)
  • Received : 2013.06.28
  • Accepted : 2013.08.09
  • Published : 2013.10.28

Abstract

Tricholoma matsutake, an ectomycorrhiza that has mutual relationships with the rootlet of Pinus denisflora, forms a fruiting body that serves as a valuable food in Asia. However, the artificial culture of this fungus has not been successful. Soil fungi, including T. matsutake, coexist with many other microorganisms and plants; therefore, complex microbial communities have an influence on the fruiting body formation of T. matsutake. Here, we report on the structures of fungal communities associated with the fairy ring of T. matsutake through the pyrosequencing method. Soil samples were collected inside the fairy ring zone, in the fairy ring zone, and outside the fairy ring zone. A total of 37,125 sequencing reads were obtained and 728 to 1,962 operational taxonomic units (OTUs) were observed in the sampling zones. The fairy ring zone had the lowest OTUs and the lowest fungal diversity of all sampling zones. The number of OTUs and fungal taxa inside and outside the fairy ring zone was, respectively, about 2 times and 1.5 times higher than the fairy ring. Taxonomic analysis showed that each sampling zone has different fungal communities. In particular, out of 209 genera total, 6 genera in the fairy ring zone, such as Hemimycena, were uniquely present and 31 genera, such as Mycena, Boletopsis, and Repetophragma, were specifically absent. The results of metagenomic analysis based on the pyrosequencing indicate a decrease of fungal communities in the fairy ring zone and changes of fungal communities depending on the fairy ring growth of T. matsutake.

Keywords

References

  1. Agerer R. 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycol. Prog. 5: 67-107. https://doi.org/10.1007/s11557-006-0505-x
  2. Ahn JS, Lee KH. 1986. Studies on the volatile aroma components of edible mushroom (Tricholoma matsutake) of Korea. J. Kor. Soc. Food Nutr. 15: 253-257.
  3. Amann RI, Ludwig W, Schleifer K-H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
  4. Amend AS, Keeley S, Garbelotto M. 2009. Forest age correlates with fine-scale spatial structure of Matsutake mycorrhizas. Mycol. Res. 113: 541-550. https://doi.org/10.1016/j.mycres.2009.01.005
  5. Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, et al. 2009. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184: 449-456. https://doi.org/10.1111/j.1469-8137.2009.03003.x
  6. Danielsen L, Thurmer A, Meinicke P, Buee M, Morin E, Martin F, et al. 2012. Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol. Evol. 2: 1935-1948. https://doi.org/10.1002/ece3.305
  7. Deacon JW, Fleming LV. 1992. Interactions of ectomycorrhizal fungi, pp. 249-300. In M. F. Allen (ed.). Mycorrhizal Functioning: An Integrative Plant-fungal Process. Chapman and Hall, New York.
  8. Ding X, Tang J, Cao M, Guo CX, Zhang X, Zhong J, et al. 2010. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutake. Int. J. Biol. Macromol. 47: 271-275. https://doi.org/10.1016/j.ijbiomac.2010.04.010
  9. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, et al. 2011. Distinct microbial communities within he endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77: 5934-5944. https://doi.org/10.1128/AEM.05255-11
  10. Guerin-Laguette A, Shindo K, Matsushita N, Suzuki K, Lapeyrie F. 2004. The mycorrhizal fungus Tricholoma matsutake stimulates Pinus densiflora seedling growth in vitro. Mycorrhiza 14: 397-400. https://doi.org/10.1007/s00572-004-0322-5
  11. Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  12. Harley JL, Smith SE. 1983. Mycorrhizal Symbiosis. Academic Press, Toronto.
  13. Harley JL. 1989. The significance of mycorrhiza. Mycol. Res. 92: 129-139. https://doi.org/10.1016/S0953-7562(89)80001-2
  14. Hebert PD, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270: 313-321. https://doi.org/10.1098/rspb.2002.2218
  15. Heck KL, van Belle G, Simberloff D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56: 1459-1461. https://doi.org/10.2307/1934716
  16. Hosford D, Pliz D, Molina R, Amaranthus M. 1997. Ecology and Management of the Commercially Harvested American Matsutake. General Technical Report PNW-GTR-412. USDA Forest Service, Pacific Northwest Research Station, Portland, OR.
  17. Hoshi H, Yagi Y, Iijima H, Matsunaga K, Ishihara Y, Yasuhara T. 2005. Isolation and characterization of a novel immunomodulatory alpha-glucan-protein complex from the mycelium of Tricholoma matsutake in basidiomycetes. J. Agric. Food Chem. 53: 8948-8956. https://doi.org/10.1021/jf0510743
  18. Kataoka R, Siddiqui ZA, Kikuchi J, Ando M, Sriwati R, Nozaki A, et al. 2012. Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake. J. Microbiol. 50: 199-206. https://doi.org/10.1007/s12275-012-1371-7
  19. Kawagishi H, Hamajima K, Takanami R, Nakamura T, Sato Y, Akiyama Y, et al. 2004. Growth promotion of mycelia of the Matsutake mushroom Tricholoma matsutake by Disoleucine. Biosci. Biotechnol. Biochem. 68: 2405-2407. https://doi.org/10.1271/bbb.68.2405
  20. Kawai M, Terada O. 1976. Artificial reproduction of Tricholoma matsutake (S. Ito et Imai) Sing. II. Effects of vitamins, nucleic acid-related substances, phytohormones and metal ions in the media on the vegetative growth of T. matsutake. Trans. Mycol. Soc. Japan 17: 168-174
  21. Kim JY, Byeon SE, Lee YG, Lee JY, Park J, Hong EK, et al. 2008. Immunostimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake. J. Microbiol. Biotechnol. 18: 95-103.
  22. Kolbert CP, Persing DH. 1999. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr. Opin. Microbiol. 2: 299-305. https://doi.org/10.1016/S1369-5274(99)80052-6
  23. Lang C, Seven J, Polle A. 2011. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21: 297-308. https://doi.org/10.1007/s00572-010-0338-y
  24. Li W, Godzik A. 2006. Cd-hit: a fast p rogram for c lustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659. https://doi.org/10.1093/bioinformatics/btl158
  25. Lian C, Narimatsu M, Nara K, Hogetsu T. 2006. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 171: 825-836. https://doi.org/10.1111/j.1469-8137.2006.01801.x
  26. Liu K-L, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G. 2012. Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl. Environ. Microbiol. 78: 1523-1533. https://doi.org/10.1128/AEM.06826-11
  27. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380. https://doi.org/10.1038/nature03959
  28. Ogawa M. 1975. Microbial ecology of mycorrhizal fungus Tricholoma matsutake Ito et Imai (Sing.) in pine forests. I. Fungal colony ('shiro') of Tricholoma matsutake. Bull. Gov. For. Exp. Stat. 272: 79-121.
  29. Ogawa M. 1975. Microbial ecology of mycorrhizal fungus Tricholoma matsutake Ito et Imai (Sing.) in pine forest. II. Mycorrhiza formed by Tricholoma matsutake. Bull. Gov. For. Exp. Stat. 278: 21-49.
  30. Ogawa M. 1978. Biology of Matsutake Mushroom, pp. 168-175. Tsukiji Shokan, Tokyo.
  31. Ogawa M. 1991. Biology of Matsutake Mushroom 2 nd Ed. Tsukiji Shokan, Tokyo.
  32. Ogawa M, Umehara T, Kontani S, Yamaji K. 1978. Cultivating method of the mycorrhizal fungus, Tricholoma matsutake ( Ito et I mai) S ing. ( 1) G rowing m ethod of pine saplings infected with T. matsutake in the field. J. Jpn. For. Soc. 60: 119-128.
  33. Ohnuma N, Amemiya K, Kakuda R, Yaoita Y, Machida K, Kikuchi M. 2000. Sterol constituents from the edible mushrooms, Lentinula edodes and Tricholoma matsutake. Chem. Pharm. Bull. 48: 749-751. https://doi.org/10.1248/cpb.48.749
  34. Ohta A. 1986. Basidiospore germination of Tricholoma matsutake. (I) Effects of organic acids on swelling and germination of basidiospores. Trans. Mycol. Soc. Jpn. 27: 167-173.
  35. Olsen GJ, Woese CR. 1993. Ribosomal RNA: a key to phylogeny. FASEB J. 7: 113-123. https://doi.org/10.1096/fasebj.7.1.8422957
  36. Panaro NJ, Yuen PK, Sakazume T, Fortina P, Kricka LJ, Wilding P. 2000. Evaluation of DNA fragment sizing and quantification by the Agilent 2100 bioanalyzer. Clin. Chem. 46: 1851-1853.
  37. Porter TM, Golding GB. 2012. Factors that affect large subunit ribosomal DNA amplicon sequencing studies of fungal communities: classification method, primer choice, and error. PLoS One 7: e35749. https://doi.org/10.1371/journal.pone.0035749
  38. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4: 1340-1351. https://doi.org/10.1038/ismej.2010.58
  39. Rousk J, Brookes PC, Baath E. 2009. Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 75: 1589-1596. https://doi.org/10.1128/AEM.02775-08
  40. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  41. Shokralla S, Spall J, Gibson J, Hajibabaei M. 2012. Nextgeneration sequencing technologies for environmental DNA research. Mol. Ecol. 21: 1794-1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
  42. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc. Natl. Acad. Sci. USA 103: 12115-12120. https://doi.org/10.1073/pnas.0605127103
  43. Streit WR, Schmitz RA. 2004. Metagenomics - the key to the uncultured microbes. Curr. Opin. Microbiol. 7: 492-498. https://doi.org/10.1016/j.mib.2004.08.002
  44. Taminaga Y, Komeyama S. 1987. Practice of Matsutake Cultivation. Youken Press, Tokyo.
  45. Vaario LM, Guerin-Laguette A, Matsushita N, Suzuki K, Lapeyrie F. 2002. Saprobic potential of Tricholoma matsutake: growth over pine bark treated with surfactants. Mycorrhiza 12: 1-5. https://doi.org/10.1007/s00572-001-0144-7
  46. Vaario LM, Fritze H, Spetz P, Heinonsalo J, Hanajík P, Pennanen T. 2011. Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl. Environ. Microbiol. 77: 8523-8531. https://doi.org/10.1128/AEM.05839-11
  47. Vaario LM, Pennanen T, Sarjala T, Savonen EM, Heinonsalo J. 2010. Ectomycorrhization of Tricholoma matsutake and two main forest tree species in Finland - an assessment of in vitro mycorrhiza formation. Mycorrhiza 20: 511-518. https://doi.org/10.1007/s00572-010-0304-8
  48. Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JP. 2002. Extensive fungal diversity in plant roots. Science 295: 2051. https://doi.org/10.1126/science.295.5562.2051
  49. Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172: 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  50. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  51. Yamada A, Maeda K, Kobayashi H, Murata H. 2005. Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring 'shiro'. Mycorrhiza 16: 111-116.
  52. Yamada A, Maeda K, Ohmasa M. 1999. Ectomycorrhiza formation of Tricholoma matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 40: 455-463. https://doi.org/10.1007/BF02461022
  53. Yamada A, Kanekawa S, Ohmasa M. 1999. Ectomycorrhiza formation of Tricholoma matsutake on Pinus densiflora. Mycoscience 40: 193-198. https://doi.org/10.1007/BF02464298
  54. Zinger L, Coissac E, Choler P, Geremia RA. 2009. Assessment of microbial communities by graph partitioning in a study of soil fungi in two alpine meadows. Appl. Environ. Microbiol. 75: 5863-5870. https://doi.org/10.1128/AEM.00748-09

Cited by

  1. Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of Tricholoma matsutake by barcoded pyrosequencing vol.117, pp.3, 2013, https://doi.org/10.1111/jam.12572
  2. Analysis of Bacterial Diversity and Communities Associated with Tricholoma matsutake Fruiting Bodies by Barcoded Pyrosequencing in Sichuan Province, Southwest China vol.26, pp.1, 2013, https://doi.org/10.4014/jmb.1505.05008
  3. Modulating the pH Activity Profiles of Phenylalanine Ammonia Lyase from Anabaena variabilis by Modification of Center-Near Surface Residues vol.183, pp.3, 2017, https://doi.org/10.1007/s12010-017-2458-8
  4. Investigation of the fungal community structures of imported wheat using high-throughput sequencing technology vol.12, pp.2, 2013, https://doi.org/10.1371/journal.pone.0171894
  5. Comparative metagenomics approaches to characterize the soil fungal communities of western coastal region, Saudi Arabia vol.12, pp.9, 2013, https://doi.org/10.1371/journal.pone.0185096
  6. Ectomycorrhization of Tricholoma matsutake with Quercus aquifolioides affects the endophytic microbial community of host plant vol.58, pp.3, 2018, https://doi.org/10.1002/jobm.201700506
  7. Metagenomic Analysis of Bacterial Communities in Rhododendron mucronulatum in Biseul Mountain County Park, Daegu, Korea vol.30, pp.1, 2013, https://doi.org/10.5352/jls.2020.30.1.32