Grouping DNA sequences with similarity measure
and application
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A LNiEaf Grouping problem with similarities between DNA sequences are studied. The similaritymeasure
and the distance measure showed the complementary characteristics. Distance measure can be obtained by

complementing similarity measure, and vice versa. Similarity measure is derived and proved. Usefulness

of the proposed similarity measure is applied to grouping problem of 25 cockroach DNA sequences. By

calculation of DNA similarity, 25 cockroaches are clustered by four groups, and the results are compared

with the previous neighbor—joining method.
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1. Introduction

DNA sequence analysis is an important work to
analyze the logic of gene evolution. In order to analyze
how far or similar they are among DNA sequences,
similarity measure is proposed to calculate the degree
of similarity measure. Hence, we consider the measure
of similarity as the computing the distance between the
species. It is well known that the DNA sequences only
consist of four nucleotide bases {a, c, g, t}. However,
there are numerous DNA bases, from 12-megabase
yeast genome to 3-gigabase human genome. The
inexact string matching algorithms of Needleman and
Wunsch[1] and Smith and Waterman[2] have proven
particularly useful for the quantifying the level of
similarity between two sequences. In this literature,
first we introduce the relation of similarity and distance
measure, and propose the similarity and distance
measure for computing distance from out-group DNA
sequences. Similarity between two sets can be applied

to the pattern classification or reliability field etc.

Similarity measure has been known as the

complementary meaning of the distance measure, i.e,

s+d=1 where d and Sare distance and
similarity measure respectively. In the above, 1 means
the sum of similarity and dissimilarity. In the previous
literatures, fuzzy entropy of a fuzzy set represents a
of the fuzzy set[3-10].

Furthermore, well-defined distance measure represents

measure of fuzziness

the fuzzy entropy. By the summing relation, we can
notice that the similarity measure can be constructed
through distance measure or fuzzy entropy function.
Well known-Hamming distance is usually used to
construct fuzzy entropy,so we compose the fuzzy
entropy function through Hamming distance measure.
Using the relation of distance measure and similarity
measure, we construct the similarity measure with
fuzzy entropy, and similarity measure is also
constructed through distance measure. In the next
section, the axiomatic definitions of entropy, distance

measure and similarity measure of fuzzy sets are
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mtroduced and fuzzy entropy is constructed through
distance measure. In Section 3, similarity measures are
constructed and proved through fuzzy entropy and the
distance measure. Used distance measure is proposed by
considering support average. To check the usefulness of
the similarity measure, simple example is shown in
Section 4. Conclusions are followed in Section 5.
Notations of this paper are used with those of Liu’s [6].

2. Preliminary

In this section, we introduce and discuss some
preliminary results. Liu suggested three axiomatic
definitions of fuzzy entropy, distance measure and
similarity measure as follows [6]. By these definitions,
we can propose entropy, and compare it with the result
of Liu.

2.1 Some definitions of fuzzy entropy
In this subsection, we introduce some preliminary

results about fuzzy entropy, distance measure,

similarity measure, and related properties.

Definition 2.1 (Liu, 1992) A real function
e:F(X) >R or e:P(X) >R is called an entropy

on F(X), or P(X) if € has the following properties:

(E1) e(D)=0,VDe P(X)
(E) e(l1/2])=max .y, e(4)

(E3) e(4)<e(4), for any shampening 4" of A
(E4) .e(A)=e(A°)

wherell/2]is the fuzzy set in which the value of
the membership function is 1/2.

Definition 2.3 (Liuy, 1992) A real function

s:F* > R" or PP> R is calld a similarity

measure, if § has the following properties:

(S1) $(4,B)=5(B,4), V4,B e F(X)
(52) 5(4,49)=0, VA e F(X)
(s3) S(D,DY)=max , ;. 5(4,B), VA,B e P(X)

(84) VA,B,Be F(X) if AcBcC, then
$(A4,B) = 5(A4,C) ands(B,C) > s(4,C)

Liu also pointed out that there is an one-to—one

relation between all distance measures and all

similarity measures, that is d+s=1. Fuzzy normal
similarity measure on F is also obtained by the
division of M@Xcper S(C.D) [ We divide universal
set X into two parts D and D¢ in P(X), then the
fuzziness of fuzzy set A be the sum of the fuzziness
of AND andAND° . By this idea, following definition
is followed.

From definition 2.1 and 2, we focus interesting area
of universal set and extend the theory of entropy,
distance measure and similarity measure of fuzzy sets.

Fan and Xie derived new entropy via defined entropy,
which is introduces by e=el(2 _e), where € is an

entropy on F(X),

2.2 Fuzzy entropy with distance measure

In this section, we propose entropy that is induced
by the distance measure. Among distance measures,
Hamming distance

measure between fuzzy sets 4and B,

is commonly used -distance

A, B) =3 |11, 5~ 1y ()

where X={x,,x2,---,xn}7 |k|is the absolute

value of k. Next Proposition shows that the distance
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relation of between fuzzy set and crisp sets.

Now we propose another fuzzy entropy induced by
distance measure which is different from Theorem 3.1
of Fan, Ma and Xie [9]. Proposed entropy needs only

A, crisp set, and it has the advantage in computation

of entropy.

Theorem 2.1 Let d be a O -distance measure on

F(X) if d satisfies

d(A°,B°)=d(4,B), 4,B€F(X)_ then
e(4)=2d((AN A4, ) [1)+2d((AU4,,)[0-2D) (1)

1s a fuzzy entropy.
Proofs of (1) are satisfied if (1) satisfy the Definition
2.1, so it is illustrated in [10]. Theorem 2.1 uses only

A

near crisp set, hence we can consider another

A

entropy. Which considers only ““far | and it has more

compact form than Theorem 2.2.

Theorem 2.2 Let d be a O —distance measure on

F(X) it d satisfies

d(A°,B)=d(4,B), ABEF(X), then
e(A) =2d((AN 4, ),[0]) +2d (AU 4,,),[1])
)

1s a fuzzy entropy.
In a similar way we can prove from (El) to (E4) of
Definition 2.1, it is also found in [10].

Proposed entropies Theorem 2.1 and 2.2 have some

advantages to the Liu's, they use only one crisp sets

4,00 and A/ézr, respectively. Later we check the
proposed entropy of Theorem 2.1 and 2.2 are the T

—entropy on F(X) for any A€ F(X), satisfying

e(A)=e(AND)+e(AND).

3. Derivation of Similarity Measure

We obtain the fuzzy entropy with the distance
measure in previous section. Generally, fuzzy entropy is

expressed  through  distance  measure, ie,

e(d)=e(d(4)) . n our result, entropy is represented

distance measure itself, e(4)=d(4), Hence, by the

result of Liu's,
d(A)+S(A) =1 3)

we modify the similarity measure as $(4) =1-e(4),
that means fuzzy setAmatches to the crisp set A

nearly as S(4) approaches to0. We illustrate the
similarity measure with the entropy function in
subsection 3.1 and the similarity measure construction

using the distance measure in the subsection 3.2.

We propose the similarity measure in the following
theorems. Theorem 3.1 is obtained by considering
Theorem 3.2.

Theorem 3.1 For fuzzy set Ae F(X ), it d satisfies

distance measure, then

5(4,4,,)=4-2d((4N4,,),[1)-2d((4U 4,,).[0])
“

is the similarity measure between fuzzy set 4 and

A

cri sp set near .

Proofs are shown in reference 11. Similarly, we
propose another similarity measure in the following

theorem.
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Theorem 3.2 For fuzzy set A€ F(X) and distance

measure d ,

$(4,4,,)=2-2d (AN 4,,,).[0) - 2((4U 4,,,).[1])

set

proposed the similarity measure that are induced from

is the similarity measure of fuzzy set 4 and crisp

A

near .

Proofs are also shown in the reference 11. We have

fuzzy entropy or distance measure.

)

[Table 1] Species information used for the dataset,

Groups_ and Abbre_viation of n%(,:&essssig)nne
species species name d no.)

S. raggei Roth raggei AB036206(18)
S. perssoni Roth perssoni AB036208(17)
S. aperturifera Roth aperturifera AB036209(3)
S. duffelsi duffelsi AB036210(5)
S. aequaliterspinosa | aequaliterspinosa | AB036216(1)
S. guentheri guentheri AB036220(10)
S. sutteri sutteri AB036221(22)
S. foveolata foveolata AB036222(7)
S. rufipes rufipes AB036223(20)
S. fruhstorferi fruhstorferi AB036224(8)
S. ternatensis ternatensis AB036226(25)
S. amboinica amboinica AB036228((2)
S. nigrita nigrita AB036230(15)
S. rugulata rugulata AB036231(21)
S. incerta incerta AB036232(12)
S. gressitti gressitti AB007529(9)
S. taiwanensis taiwanensis AB007527(23)
S. esakii esakil AB007518(6)
S. inaequaliterspinosa|inaequaliterspinosa | AB036234(11)
S. obtusespinosa obtusespinosa | AB036236(16)
S. taylori taylori AB036239(24)
S. rossi rossi AB036240(19)
S. cavagnaroi cavagnaroi AB036241(4)
S. nalepae nalepae AB036242(14)
S. matsumotoi matsumotoi AB188683(13)
y;gfl‘t’;szgj’depl"”at deplanata AB036104

4. Tllustrative Example

The subsocial wood-feeding cockroach genus
SalganeaStal  (Blaberidae:
about 50 species, is distributed in the Indo-Malayan

region and New Guinea of the Australian region. Since

Panesthiinae), including

the completed COIl gene sequences from about 25
species of the genus were already reported in
reference[12], COII gene of the genus would be a good
candidate to investigate patterns of sequence evolution
and modeling within the lineage. Our dataset was
constructed with the published COI (cytochrome
oxydasesubsunit II) gene sequences [12]. According to
a previous study, Miopanesthia Saussure is the basal
group in the Panesthiinae. Thus the COIIl sequences of
Miopanesthiadeplanata was used as out-group. The
species
summarized in Table 1 (also refer to Makewa et al.,
2001). According to classical morphological studies

accession numbers and names were

(refer to Maekawa et al, 2001), the species of the genus
for this study were classified as 4 groups of 18 species,
but the other 7 species have not been unclassified yet.

Firstly, we classified the dataset wusing the
Neighbor—Joining Method and we applied our develop
method for classifying the dataset. For the
neighbor—joining analysis, we aligned the 685

sequences of the COIl gene by using the Clustal X
software. The gene sequences are aligned from 25
species of the genus Salganea and out—group. The 228
amino acids corresponding to the gene sequences were
also used.

First, we carry out the analysis of the dataset by
Neighbor—Joining Method. The phylogram tree induced
by the neighbor—joining method is shown in Fig. 1. The
number above and below the branches correspond to
the percentage of 1000 bootstrap replicates. All nodes
with no numbers are supported by 50% or less of the
bootstrap values. Pairwise genetic distance based on
Kimura 2-parameter is given to Table 2.
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aequaliterspinosa a 1 1 1z 13 14 15 16
9 perzzan. o
duffelsi 19 nalepoe 47242 -
11 sukkere 916653 4.7999% -
sutteri 12 operturife 9.17952 9.21358 9.15915 ol
13 gresscbby  @.15943 924415 4.16189 @.13311 -
1 towwonens. @.17397 9.25075 @.15321 @.16623 9.13345 -
guentheri 15 ineerbe 9.284919 9.76529 @.17597 4.1772% 4.15931 @.14393 -
16 eoequolik 919904 9.21793 @.17747 9.18778 9.13835 4.18839 9.72193 -
raggei 17 taylart 978667 4.79975 @.15726 9.17947 4.19995 9.179%6 9.21711 @.18165
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matsumotoi 17 taylart -
18 ombainwea  9.18991
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. 71 ternotens: @.17847 9.19175 @.16651 @.1549% -
1088 72 guffels.  @.15699 9.18673 @.1387% @.17233 4.16184 -
— 23 avkuszespin 9.17362 9.19699 9.17313 49.18915 49.17G22 liaia "
perssani 2 Favealobo  @.15905 9.19450 @.15229 916436 9.17185 4.1334F €.1998

17374 €.18497 4.293%
22352 9.2528d 9.22328

25 motsumabar 9.1967@ 49.7@165 @.17153 @.19269 4.17946
2 deplonoka  @.29531 9.23654 9.23283 @.24945 4.24649%

@@m e

fruhstorfe

rufipes

foveolata

First we assign the 25 species to the successive

aperturifera

ierspinesa - umMbers. Next we compute the distance from out

camanerel ogroup deplanata and fuliginosa to the 25 species as
taylari
Lig” ' follows.

rogsi

rugulata
S0 E

amhbninica

atgtcaacatgagctaatataggtacacaa -+ (deplanata)

nalepae

atgacaacatgagccaacataaacttacaa

Deplanata {nutgraup)
0.05 substitutions/site

(aequaliterspinosa)
[Fig. 1] phylogram tree induced by the neighbor—joining

method Distance from two outgroup can be defined as
follows
With the similarity between DNA sequences, we try .
the unsupervised classification, then we exclude D(a. .y )=;(am(xi—x,')+ﬁm(yi—yi') +ym(z; = z)))
out-group. . .

where, " denotes the number of amino acid, ¢ i

[Table 2] Genetic distance based on Kimura and 7 are the weighting factors, and %i>Vi>Zi be the

2—parameter successive amino acid out group. By the matching

condition, m(xi_‘xi’)zl, it m(x;,—x) Otherwise

Pourwise duskonte mokris using Kumuro Z-porometer distance

. _ .

N 1 : 3 a s 5 d 8 satisfies —1. Hence 25 species can have the two

? Frahstarfe @ 71434 - . .

Sngris @15 91850 - distance value from two out-group, then25 species can

4 covogroratr 9.71159 9.21937 9.1586F ¥

5 ruguloto  @.2203@ 4.19491 @.13963 4.28859 - d . 2 dl . al l . h h . d
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M rossu 9.29d39 9.17a51 9.174&F 49.17979 9.19943 9.174997 9.29974 4.17969

@1 ternotens: @ 13316 @.17547 @.15@93 9.21411 @.19716 9.15374 @.289d7 @.14@9%2 e . M : . . . .

@2 duFFelst 9.19754 9.18417 9.15674 9.29397 9.17742 9.17445 9.29575 49.16925 . .
Magnification of 22 species point is illustrated in Fig. 3
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[Fig. 2] Distance from outgroup
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[Fig. 3] Magnification of clustering area
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[Fig. 4] Similarity from cavagnaroi to other 24 species
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[Fig. 5] Similarity from nalepae to other 24 species

Autocorrelation values are normalized, and 25%ié25

data matrix is obtained. Next, we consider the

correlation between DNA sequences. Low matching
values are illustrated in Fig. 4 and 5. In these cases,
alpha and beta are 1, and gamma denotes 0.2.

High matching values between DNA sequences are
illustrated in Fig. 6 and 7.
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[Fig. 6] Similarity from esakii to other 24 species
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[Fig. 7] Similarity from guentheri to other 24 species

[Table 3] Species information used for the dataset

Proposed Method
Group 1 1,5,10,22
Group 2 3,7,8,20
Group 3 6,9,12,15,16,18,23,25,
Group 4 2,4,11,13,14,17,,19,21,24

In this analysis, we consider that the multi matching
condition. In any row, matching value over arbitrary
threshing value can be chosen several. For example, 1
and 5 species has 0.739 maximum matching value in
first row. 22 species has the largest matching value
with 5 species in 5th row. 10 can be chosen in 22th row
similarly. 22 species is also has the maximum value
with 10 in 10th row. Hence, we can conclude that
Groupl, and Group2 are included in the same sectors
[12].And elements of Group3 and Group4 are placed in

near.
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5. Conclusions

In order to classify data sets, evaluation of
uncertainty and similarity was done by applying fuzzy
entropy and similarity measure. Previous study on
fuzzy entropy and similarity measure was introduced,
and the derivation of similarity measure which can be
represented by the function of distance measure.
Proposed similarity measure and distance measure
applied to the pattern recognition or data grouping.
With the distance measure, 25 cockroach DNA
sequences are clustered, and the results are compared

with the previous one.
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