DOI QR코드

DOI QR Code

국소적 전립선암의 고강도 집속 초음파 치료 후 국소적 암 재발의 발견과 역동적 조영증강 자기공명영상의 역할

Dynamic Contrast-Enhanced MR Imaging in Detecting Local Tumor Progression after HIFU Ablation of Localized Prostate Cancer

  • 박정재 (성균관대학교 의과대학 삼성서울병원 영상의학과) ;
  • 김찬교 (성균관대학교 의과대학 삼성서울병원 영상의학과) ;
  • 이현무 (성균관대학교 의과대학 삼성서울병원 비뇨기과) ;
  • 박병관 (성균관대학교 의과대학 삼성서울병원 영상의학과) ;
  • 박성윤 (성균관대학교 의과대학 삼성서울병원 영상의학과)
  • Park, Jung Jae (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Chan Kyo (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Hyun Moo (Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Byung Kwan (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Sung Yoon (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 투고 : 2013.03.31
  • 심사 : 2013.08.28
  • 발행 : 2013.09.30

초록

목적: 국소적 전립선암의 고강도 집속 초음파 치료 후 국소적 암 재발을 발견하는데 있어 역동적 조영증강 자기공명영상의 진단적 능력을 T2 강조영상과 후향적으로 비교하고자 한다. 대상과 방법: 고강도 집속 초음파 치료을 시행 받은 이후 혈중 전립선 특이 항원 수치가 증가한 26명의 환자를 연구에 포함시켰다. 모든 환자는 T2 강조영상과 역동적 조영증강 자기공명영상을 시행 받은 후 경직장 초음파 유도하 조직 검사를 받았으며, 영상 소견과 조직 검사 결과는 전립선을 여섯 구획으로 분리 하여 비교하였다. 조직 검사 결과에서 암 병변이 있는 경우 국소적 암 재발로 정의하였으며, 영상 소견은 두 명의 독립적인 영상의학과 의사가 분석하였다. 결과: 156개의 전립선 구획에서 17명의 환자, 51 구획 (33%)에서 재발암 병변이 발견되었다. 국소적 암 재발의 발견에 있어 역동적 조영증강영상과 T2 강조영상의 민감도는 관찰자 1 에서 각각 80%와 57% (P < 0.001), 관찰자 2 에서 각각 84%와 61% (P < 0.001) 였다. 두 영상 방법간 특이도와 정확도는 두 관찰자에서 모두 유의한 차이가 없었다 (P > 0.05). 관찰자간 일치도에 있어 역동적 조영 증강 영상의 카파값은 0.52, T2 강조 영상의 카파값은 0.21 이었다. 결론: 국소적 전립선암의 고강도 집속 초음파 치료 후 국소적 암 재발을 발견하는데 있어 역동적 조영증강영상은 T2 강조영상보다 더욱 민감하며 관찰자간 일치도 역시 높다.

Purpose : To retrospectively evaluate the diagnostic performance of dynamic contrast-enhanced MR imaging (DCE-MRI) in detecting recurrent prostate cancer after HIFU of clinically localized cancer, as compared with T2-weighted imaging (T2WI). Materials and Methods: Twenty-six patients with increased prostate-specific antigen levels after HIFU were included in this study. All MR examinations were performed using T2WI and DCE-MRI, followed by transrectal ultrasound-guided biopsy. MRI and biopsy results were correlated in six prostate sectors. Residual or recurrent cancer after HIFU was defined as local tumor progression if biopsy results showed any cancer foci. Two independent readers interpreted the MR images. Results: Of 156 prostate sectors, 51 (33%) were positive for cancer in 17 patients. For detecting local tumor progression, the sensitivity of DCE-MRI and T2WI was 80% and 57% for reader 1 (P < 0.001) versus 84% and 61% for reader 2 (P < 0.001), respectively. The specificity and overall accuracy between DCE-MRI and T2WI showed no statistical difference in both readers (P > 0.05). Interobserver agreement of DCE-MRI and T2WI was moderate and fair, respectively. Conclusion: For detecting local tumor progression of prostate cancer after HIFU, DCE-MRI was more sensitive than T2WI, with less interobserver variability.

키워드

참고문헌

  1. Aus G, Abbou CC, Bolla M, et al. EAU guidelines on prostate cancer. Eur Urol 2005;48:546-551 https://doi.org/10.1016/j.eururo.2005.06.001
  2. Aus G. Current status of HIFU and cryotherapy in prostate cancer--a review. Eur Urol 2006;50:927-934; discussion 934 https://doi.org/10.1016/j.eururo.2006.07.011
  3. Poissonnier L, Chapelon JY, Rouviere O, et al. Control of prostate cancer by transrectal HIFU in 227 patients. Eur Urol 2007;51:381-387 https://doi.org/10.1016/j.eururo.2006.04.012
  4. Forsythe K, Blacksburg S, Stone N, Stock RG. Intensitymodulated radiotherapy causes fewer side effects than threedimensional conformal radiotherapy when used in combination with brachytherapy for the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 2012;83:630-635 https://doi.org/10.1016/j.ijrobp.2011.06.2013
  5. Orsi F, Arnone P, Chen W, Zhang L. High intensity focused ultrasound ablation: a new therapeutic option for solid tumors. J Cancer Res Ther 2010;6:414-420 https://doi.org/10.4103/0973-1482.77064
  6. Colombel M, Gelet A. Principles and results of high-intensity focused ultrasound for localized prostate cancer. Prostate Cancer Prostatic Dis 2004;7:289-294 https://doi.org/10.1038/sj.pcan.4500721
  7. Rebillard X, Gelet A, Davin JL, et al. Transrectal high-intensity focused ultrasound in the treatment of localized prostate cancer. J Endourol 2005;19:693-701 https://doi.org/10.1089/end.2005.19.693
  8. Gelet A, Chapelon JY, Poissonnier L, et al. Local recurrence of prostate cancer after external beam radiotherapy: early experience of salvage therapy using high-intensity focused ultrasonography. Urology 2004;63:625-629 https://doi.org/10.1016/j.urology.2004.01.002
  9. Rouviere O, Lyonnet D, Raudrant A, et al. MRI appearance of prostate following transrectal HIFU ablation of localized cancer. Eur Urol 2001;40:265-274 https://doi.org/10.1159/000049786
  10. Kirkham AP, Emberton M, Hoh IM, Illing RO, Freeman AA, Allen C. MR imaging of prostate after treatment with highintensity focused ultrasound. Radiology 2008;246:833-844 https://doi.org/10.1148/radiol.2463062080
  11. Kim CK, Park BK, Lee HM, Kim SS, Kim E. MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. AJR Am J Roentgenol 2008;190:1180-1186 https://doi.org/10.2214/AJR.07.2924
  12. Ben Cheikh A, Girouin N, Ryon-Taponnier P, et al. MR detection of local prostate cancer recurrence after transrectal highintensity focused US treatment: preliminary results. J Radiol 2008;89:571-577 https://doi.org/10.1016/S0221-0363(08)71483-5
  13. Punwani S, Emberton M, Walkden M, et al. Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease. Br J Radiol 2012;85:720-728 https://doi.org/10.1259/bjr/61380797
  14. Goldberg SN, Grassi CJ, Cardella JF, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 2005;235:728-739 https://doi.org/10.1148/radiol.2353042205
  15. Engelbrecht MR, Huisman HJ, Laheij RJ, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 2003;229:248-254 https://doi.org/10.1148/radiol.2291020200
  16. Futterer JJ, Engelbrecht MR, Huisman HJ, et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology 2005;237:541-549 https://doi.org/10.1148/radiol.2372041724
  17. Kim JK, Hong SS, Choi YJ, et al. Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging 2005;22:639-646 https://doi.org/10.1002/jmri.20431
  18. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174 https://doi.org/10.2307/2529310
  19. Donahue KM, Weisskoff RM, Parmelee DJ, et al. Dynamic Gd- DTPA enhanced MRI measurement of tissue cell volume fraction. Magn Reson Med 1995;34:423-432 https://doi.org/10.1002/mrm.1910340320
  20. Isebaert S, Van den Bergh L, Haustermans K, et al. Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging 2012
  21. Ocak I, Bernardo M, Metzger G, et al. Dynamic contrastenhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am J Roentgenol 2007;189:849