References
- Bergers G, Brekken R, McMahon G, et al (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2, 737-44. https://doi.org/10.1038/35036374
- Chantrain CF, Shimada H, Jodele S, et al (2004). Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res, 64, 1675-86. https://doi.org/10.1158/0008-5472.CAN-03-0160
- Cui ZW, Xia Y, Ye YW, et al (2012). RALY RNA binding proteinlike reduced expression is associated with poor prognosis in clear cell renal cell carcinoma. Asian Pac J Cancer Prev, 13, 3403-8. https://doi.org/10.7314/APJCP.2012.13.7.3403
- Delaney JR, Mlodzik M (2006). TGF-beta activated kinase-1: new insights into the diverse roles of TAK1 in development and immunity. Cell Cycle, 5, 2852-5. https://doi.org/10.4161/cc.5.24.3558
- Edlund S, Bu S, Schuster N, et al (2003). Transforming growth factor-beta1 (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGFbeta- activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell, 14, 529-44. https://doi.org/10.1091/mbc.02-03-0037
- Farina AR, Coppa A, Tiberio A, et al (1998). Transforming growth factor-beta1 enhances the invasiveness of human MDA-MB-231 breast cancer cells by up-regulating urokinase activity. Int J Cancer, 75, 21-30.
- Fuhrman SA, Lasky LC, Limas C (1982). Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol, 6, 655. https://doi.org/10.1097/00000478-198210000-00007
- Janzen NK, Kim HL, Figlin RA, et al (2003). Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin N Am, 30, 843-52. https://doi.org/10.1016/S0094-0143(03)00056-9
- Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D(2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
- Jiang Z, Chu PG, Woda BA, et al (2006). Analysis of RNAbinding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol, 7, 556-64. https://doi.org/10.1016/S1470-2045(06)70732-X
- Kajino-Sakamoto R, Inagaki M, Lippert E, et al (2008). Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J Immunol, 181, 1143-52. https://doi.org/10.4049/jimmunol.181.2.1143
- Karin M, Greten FR (2005). NF-[kappa]B: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 5, 749-59. https://doi.org/10.1038/nri1703
- Kaur S, Wang F, Venkatraman M, Arsura M (2005). X-linked inhibitor of apoptosis (XIAP) inhibits c-Jun N-terminal kinase 1 (JNK1) activation by transforming growth factor beta1 (TGF-beta1) through ubiquitin-mediated proteosomal degradation of the TGF-beta1-activated kinase 1 (TAK1). J Biol Chem, 280, 38599-608. https://doi.org/10.1074/jbc.M505671200
- Kondo M, Osada H, Uchida K, et al (1998). Molecular cloning of human TAK1 and its mutational analysis in human lung cancer. Int J Cancer, 75, 559-63. https://doi.org/10.1002/(SICI)1097-0215(19980209)75:4<559::AID-IJC11>3.0.CO;2-4
- Lam JS, Shvarts O, Leppert JT, et al (2005). Renal cell carcinoma 2005: new frontiers in staging, prognostication and targeted molecular therapy. J Urol, 173, 1853-62. https://doi.org/10.1097/01.ju.0000165693.68449.c3
- Lane BR, Babineau D, Kattan MW, et al (2007). A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J Urology, 178, 429-34. https://doi.org/10.1016/j.juro.2007.03.106
- Levi F, Ferlay J, Galeone C, et al (2008). The changing pattern of kidney cancer incidence and mortality in Europe. BJU Int, 101, 949-58. https://doi.org/10.1111/j.1464-410X.2008.07451.x
- Liu HH, Xie M, Schneider MD, Chen ZJ (2006). Essential role of TAK1 in thymocyte development and activation. Proc Natl Acad Sci USA, 103, 11677-82. https://doi.org/10.1073/pnas.0603089103
- Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods, 25, 402-8. https://doi.org/10.1006/meth.2001.1262
- Li X, Huang Y, Xia J, et al (2011). CXCR4 expression in patients with high-risk locally advanced renal cell carcinoma can independently predict increased risk of disease progression and poor overall survival. Asian Pac J Cancer Prev, 12, 3313-8.
- Melisi D, Xia Q, Paradiso G, et al (2011). Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst, 103, 1190-204. https://doi.org/10.1093/jnci/djr243
-
Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999). The kinase TAK1 can activate the NIK-I
${\kappa}B$ as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 398, 252-6. https://doi.org/10.1038/18465 - Nogueira M, Kim HL (2008). Molecular markers for predicting prognosis of renal cell carcinoma. Urol Oncol, 26, 113-24. https://doi.org/10.1016/j.urolonc.2007.03.028
- Omori E, Morioka S, Matsumoto K, et al (2008). TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. J Biol Chem, 283, 26161-8. https://doi.org/10.1074/jbc.M804513200
-
Pasparakis M (2009). Regulation of tissue homeostasis by NF-
${\kappa}B$ signalling: implications for inflammatory diseases. Nat Rev Immunol, 9, 778-88. https://doi.org/10.1038/nri2655 - Safina A, Ren M-Q, Vandette E, Bakin AV, et al (2008). TAK1 is required for TGF-[beta]1-mediated regulation of matrix metalloproteinase-9 and metastasis. Oncogene, 27, 1198-207. https://doi.org/10.1038/sj.onc.1210768
- Safina A, Sotomayor P, Limoge M, et al (2011). TAK1-TAB2 signaling contributes to bone destruction by breast carcinoma cells. Mol Cancer Res, 9, 1042-53. https://doi.org/10.1158/1541-7786.MCR-10-0196
- Safina A, Vandette E, Bakin AV, et al (2007). ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene, 26, 2407-22. https://doi.org/10.1038/sj.onc.1210046
- Sato S, Sanjo H, Takeda K, et al (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol, 6, 1087-95. https://doi.org/10.1038/ni1255
- Schrader A, Sevinc S, Olbert P, et al (2008). Gender-specific characteristics and survival of renal cell carcinoma. Urologe A, 47, 1182, 4-6.
- Shibuya H, Iwata H, Masuyama N, et al (1998). Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. Embo J, 17, 1019-28. https://doi.org/10.1093/emboj/17.4.1019
- Shim JH, Xiao C, Paschal AE, et al (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev, 19, 2668-81. https://doi.org/10.1101/gad.1360605
- Shvarts O, Seligson D, Lam J, et al (2005). p53 is an independent predictor of tumor recurrence and progression after nephrectomy in patients with localized renal cell carcinoma. J Urol, 725-8.
- Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H (2005). Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem, 280, 7359-68. https://doi.org/10.1074/jbc.M407537200
- Suarez-Cuervo C, Merrell MA, Watson L, et al (2004). Breast cancer cells with inhibition of p38alpha have decreased MMP-9 activity and exhibit decreased bone metastasis in mice. Clin Exp Metastasis, 21, 525-33. https://doi.org/10.1007/s10585-004-3503-x
- Takaesu G, Ninomiya-Tsuji J, Kishida S, et al (2001). Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol Cell Biol, 21, 2475-84. https://doi.org/10.1128/MCB.21.7.2475-2484.2001
- Tamaskar I, Choueiri TK, Sercia L, et al (2007). Differential expression of caveolin 1 in renal neoplasms. Cancer, 110, 776-82. https://doi.org/10.1002/cncr.22838
- Tostain J, Li G, Gentil-Perret A, Gigante M (2010). Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur J Cancer, 46, 3141-8. https://doi.org/10.1016/j.ejca.2010.07.020
- Wan YY, Chi H, Xie M, Schneider MD, Flavell RA (2006). The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol, 7, 851-8. https://doi.org/10.1038/ni1355
- Wei X, Zhou L, Hu L, Huang Y (2012). Tanshinone IIA arrests cell cycle and induces apoptosis in 786-O human renal cell carcinoma cells. Oncol Lett, 3, 1144-8.
- Wood CG (2006). Molecular markers of prognosis in renal cell carcinoma: Insight into tumor biology helps define risk and provides targets for therapy. J Surg Oncol, 94, 264-5. https://doi.org/10.1002/jso.20448
- Yamaguchi K, Shirakabe K, Shibuya H, et al (1995). Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science, 270, 2008-11. https://doi.org/10.1126/science.270.5244.2008
- Yu XY, Zhang Z, Zhang GJ, Guo KF, Kong CZ (2012). Knockdown of Cdc25B in renal cell carcinoma is associated with decreased malignant features. Asian Pac J Cancer Prev, 13, 931-5. https://doi.org/10.7314/APJCP.2012.13.3.931
Cited by
- Overexpression of Cyclooxygenase-1 Correlates with Poor Prognosis in Renal Cell Carcinoma vol.14, pp.6, 2013, https://doi.org/10.7314/APJCP.2013.14.6.3729
- The TAK1-NF- B axis as therapeutic target for AML vol.124, pp.20, 2014, https://doi.org/10.1182/blood-2014-04-569780
- High expression of pituitary tumor-transforming gene-1 predicts poor prognosis in clear cell renal cell carcinoma vol.3, pp.2, 2014, https://doi.org/10.3892/mco.2014.478
- microRNA-184 functions as tumor suppressor in renal cell carcinoma vol.9, pp.3, 2015, https://doi.org/10.3892/etm.2015.2199
- KLHL21, a novel gene that contributes to the progression of hepatocellular carcinoma vol.16, pp.1, 2016, https://doi.org/10.1186/s12885-016-2851-7
- Incremental Expression of 14-3-3 Protein Beta/Alpha in Urine Correlates with Advanced Stage and Poor Survival in Patients with Clear Cell Renal Cell Carcinoma vol.17, pp.3, 2016, https://doi.org/10.7314/APJCP.2016.17.3.1399
- Identification of genes associated with renal cell carcinoma using gene expression profiling analysis vol.12, pp.1, 2016, https://doi.org/10.3892/ol.2016.4573