DOI QR코드

DOI QR Code

Zanamivir Oral Delivery: Enhanced Plasma and Lung Bioavailability in Rats

  • Received : 2013.01.22
  • Accepted : 2013.02.07
  • Published : 2013.03.31

Abstract

The objective of this study was to enhance the oral bioavailability (BA) of zanamivir (ZMR) by increasing its intestinal permeability using permeation enhancers (PE). Four different classes of PEs (Labrasol$^{(R)}$, sodium cholate, sodium caprate, hydroxypropyl ${\beta}$-cyclodextrin) were investigated for their ability to enhance the permeation of ZMR across Caco-2 cell monolayers. The flux and $P_{app}$ of ZMR in the presence of sodium caprate (SC) was significantly higher than other PEs in comparison to control, and was selected for further investigation. All concentrations of SC (10-200 mM) demonstrated enhanced flux of ZMR in comparison to control. The highest flux (13 folds higher than control) was achieved for the formulation with highest SC concentration (200 mM). The relative BA of ZMR formulation containing SC (PO-SC) in plasma at a dose of 10 mg/kg following oral administration in rats was 317.65% in comparison to control formulation (PO-C). Besides, the $AUC_{0-24\;h}$ of ZMR in the lungs following oral administration of PO-SC was $125.22{\pm}27.25$ ng hr $ml^{-1}$ with a $C_{max}$ of $156.00{\pm}24.00$ ng/ml reached at $0.50{\pm}0.00$ h. But, there was no ZMR detected in the lungs following administration of control formulation (PO-C). The findings of this study indicated that the oral formulation PO-SC containing ZMR and SC was able to enhance the BA of ZMR in plasma to an appropriate amount that would make ZMR available in lungs at a concentration higher (>10 ng/ml) than the $IC_{50}$ concentration of influenza virus (0.64-7.9 ng/ml) to exert its therapeutic effect.

Keywords

References

  1. Artursson, P., Palm, K. and Luthman, K. (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46, 27-43. https://doi.org/10.1016/S0169-409X(00)00128-9
  2. Aungst, B. J. (2000) Intestinal permeation enhancers. J. Pharm. Sci. 89, 429-442. https://doi.org/10.1002/(SICI)1520-6017(200004)89:4<429::AID-JPS1>3.0.CO;2-J
  3. Baughman, R. A., Kapoor, S. C., Agarwal, R. K., Kisicki, J., Catella-Lawson, F. and FitzGerald, G. A. (1998) Oral delivery of anticoagulant doses of heparin. A randomized, double-blind, controlled study in humans. Circulation 98, 1610-1615. https://doi.org/10.1161/01.CIR.98.16.1610
  4. Boonyapiwat, B., Sarisuta, N. and Kunastitchai, S. (2011) Characterization and in vitro evaluation of intestinal absorption of liposomes encapsulating zanamivir. Curr. Drug Deliv. 8, 392-397. https://doi.org/10.2174/156720111795767915
  5. Buclin, T., Cosma Rochat, M., Burckhardt, P., Azria, M. and Attinger, M. (2002) Bioavailability and biological efficacy of a new oral formulation of salmon calcitonin in healthy volunteers. J. Bone Miner. Res. 17, 1478-1485. https://doi.org/10.1359/jbmr.2002.17.8.1478
  6. Caballero, E., Prieto, C., Ruiz, M. and Azanza, J. R. (2000) Zanamivir: new therapeutic option for influenza. Rev. Med. Univ. Navarra 44, 56-61.
  7. Calfee, D. P., Peng, A. W., Cass, L. M., Lobo, M. and Hayden, F. G. (1999) Safety and efficacy of intravenous zanamivir in preventing experimental human influenza A virus infection. Antimicrob. Agents Chemother. 43, 1616-1620.
  8. Cano-Cebrian, M. J., Zornoza, T., Granero, L. and Polache, A. (2005) Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans and others: a target for drug delivery. Curr. Drug Deliv. 2, 9-22. https://doi.org/10.2174/1567201052772834
  9. Colman, P. M. (2005). Zanamivir: an influenza virus neuraminidase inhibitor. Expert Rev. Anti. Infect. Ther. 3, 191-199. https://doi.org/10.1586/14787210.3.2.191
  10. de Jong, M. D., Tran, T. T., Truong, H. K., Vo, M. H., Smith, G. J., Nguyen, V. C., Bach, V. C., Phan, T. Q., Do, Q. H., Guan, Y., Peiris, J. S., Tran, T. H. and Farrar, J. (2005) Oseltamivir resistance during treatment of influenza A (H5N1) infection. N. Engl. J. Med. 353, 2667-2672. https://doi.org/10.1056/NEJMoa054512
  11. Dunn, C. J. and Goa, K. L. (1999) Zanamivir: a review of its use in influenza. Drugs 58, 761-784. https://doi.org/10.2165/00003495-199958040-00016
  12. Elliott, M. (2001) Zanamivir: from drug design to the clinic. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356, 1885-1893. https://doi.org/10.1098/rstb.2001.1021
  13. Fick, J., Lindberg, R. H., Tysklind, M., Haemig, P. D., Waldenstrom, J., Wallensten, A. and Olsen, B. (2007) Antiviral oseltamivir is not removed or degraded in normal sewage water treatment: implications for development of resistance by influenza A virus. PLoS One 2, e986. https://doi.org/10.1371/journal.pone.0000986
  14. Freund, B., Gravenstein, S., Elliott, M. and Miller, I. (1999) Zanamivir: a review of clinical safety. Drug Saf. 21, 267-281. https://doi.org/10.2165/00002018-199921040-00003
  15. Goldberg, M. and Gomez-Orellana, I. (2003) Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discovery 2, 289-295. https://doi.org/10.1038/nrd1067
  16. Gomez-Orellana, I. (2005) Strategies to improve oral drug bioavailability. Expert Opin. Drug Deliv. 2, 419-433. https://doi.org/10.1517/17425247.2.3.419
  17. Gupta, S. V., Gupta, D., Sun, J., Dahan, A., Tsume, Y., Hilfinger, J., Lee, K. D. and Amidon, G. L. (2011) Enhancing the intestinal membrane permeability of zanamivir: a carrier mediated prodrug approach. Mol. Pharm. 8, 2358-2367. https://doi.org/10.1021/mp200291x
  18. Jorgensen, J., Holtug, K., Jeppesen, P. B. and Mortensen, P. B. (1998) Human rectal absorption of short- and medium-chain C2-C10 fatty acids. Scand. J. Gastroenterol. 33, 590-594. https://doi.org/10.1080/00365529850171846
  19. Kidron, M., Dinh, S., Menachem, Y., Abbas, R., Variano, B., Goldberg, M., Arbit, E. and Bar-On, H. (2004) A novel per-oral insulin formulation: proof of concept study in non-diabetic subjects. Diabetic Med. 21, 354-357. https://doi.org/10.1111/j.1464-5491.2004.01160.x
  20. Le, Q. M., Kiso, M., Someya, K., Sakai, Y. T., Nguyen, T. H., Nguyen, K. H., Pham, N. D., Ngyen, H. H., Yamada, S., Muramoto, Y., Horimoto, T., Takada, A., Goto, H., Suzuki, T., Suzuki, Y. and Kawaoka, Y. (2005) Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108. https://doi.org/10.1038/4371108a
  21. Lee, W. A., Ennis, R. D., Longenecker, J. P. and Bengtsson, P. (1994) The bioavailability of intranasal salmon calcitonin in healthy volunteers with and without a permeation enhancer. Pharm. Res. 11, 747-750. https://doi.org/10.1023/A:1018992716621
  22. Leone-Bay, A., Sato, M., Paton, D., Hunt, A. H., Sarubbi, D., Carozza, M., Chou, J., McDonough, J. and Baughman, R. A. (2001) Oral delivery of biologically active parathyroid hormone. Pharm. Res. 18, 964-970. https://doi.org/10.1023/A:1010936227570
  23. Li, W., Escarpe, P. A., Eisenberg, E. J., Cundy, K. C., Sweet, C., Jakeman, K. J., Merson, J., Lew, W., Williams, M., Zhang, L., Kim, C. U., Bischofberger, N., Chen, M. S. and Mendel, D. B. (1998) Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob. Agents Chemother. 42, 647-653. https://doi.org/10.1093/jac/42.5.647
  24. Lindmark, T., Nikkila, T. and Artursson, P. (1995) Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 275, 958-964.
  25. Lindmark, T., Schipper, N., Lazorova, L., de Boer, A. G. and Artursson, P. (1998) Absorption enhancement in intestinal epithelial Caco-2 monolayers by sodium caprate: assessment of molecular weight dependence and demonstration of transport routes. J. Drug Target. 5, 215-223. https://doi.org/10.3109/10611869808995876
  26. Maher, S., Leonard, T. W., Jacobsen, J. and Brayden, D. J. (2009) Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv. Drug Deliv. Rev. 61, 1427-1449. https://doi.org/10.1016/j.addr.2009.09.006
  27. Miller, J. M., Dahan, A., Gupta, D., Varghese, S. and Amidon, G. L. (2010) Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir. Mol. Pharm. 7, 1223-1234. https://doi.org/10.1021/mp100050d
  28. Mori, K. (1953) Production of gastric lesions in the rat by the diet containing fatty acids. Gan 44, 421-427.
  29. Nissan, A., Ziv, E., Kidron, M., Bar-On, H., Friedman, G., Hyam, E. and Eldor, A. (2000) Intestinal absorption of low molecular weight heparin in animals and human subjects. Haemostasis 30, 225-232.
  30. Press, B. and Di Grandi, D. (2008) Permeability for intestinal absorption: Caco-2 assay and related issues. Curr. Drug Metab. 9, 893-900. https://doi.org/10.2174/138920008786485119
  31. Raoof, A. A., Ramtoola, Z., McKenna, B., Yu, R. Z., Hardee, G. and Geary, R. S. (2002) Effect of sodium caprate on the intestinal absorption of two modified antisense oligonucleotides in pigs. Eur. J. Pharm. Sci. 17, 131-138. https://doi.org/10.1016/S0928-0987(02)00162-8
  32. Reece, P. A. (2010) Zanamivir for the treatment of avian influenza infections in humans. Expert Rev. Clin. Pharmacol. 3, 25-29. https://doi.org/10.1586/ecp.09.60
  33. Rege, B. D., Yu, L. X., Hussain, A. S. and Polli, J. E. (2001) Effect of common excipients on Caco-2 transport of low-permeability drugs. J. Pharm. Sci. 90, 1776-1786. https://doi.org/10.1002/jps.1127
  34. Salama, N. N., Eddington, N. D. and Fasano, A. (2006) Tight junction modulation and its relationship to drug delivery. Adv. Drug Deliv. Rev. 58, 15-28. https://doi.org/10.1016/j.addr.2006.01.003
  35. Sawada, T., Ogawa, T., Tomita, M., Hayashi, M. and Awazu, S. (1991) Role of paracellular pathway in nonelectrolyte permeation across rat colon epithelium enhanced by sodium caprate and sodium caprylate. Pharm. Res. 8, 1365-1371. https://doi.org/10.1023/A:1015840921203
  36. Sharma, P., Varma, M. V., Chawla, H. P. and Panchagnula, R. (2005a) Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Farmaco 60, 884-893. https://doi.org/10.1016/j.farmac.2005.08.008
  37. Sharma, P., Varma, M. V., Chawla, H. P. and Panchagnula, R. (2005b) Relationship between lipophilicity of BCS class III and IV drugs and the functional activity of peroral absorption enhancers. Farmaco 60, 870-873. https://doi.org/10.1016/j.farmac.2005.08.006
  38. Shelton, M. J., Lovern, M., Ng-Cashin, J., Jones, L., Gould, E., Gauvin, J. and Rodvold, K. A. (2011) Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob. Agents Chemother. 55, 5178-5184. https://doi.org/10.1128/AAC.00703-11
  39. Smetanova, L., Stetinova, V., Svoboda, Z. and Kvetina, J. (2011) Caco-2 cells, biopharmaceutics classification system (BCS) and biowaiver. Acta Medica (Hradec Kralove, Czech Repub) 54, 3-8. https://doi.org/10.14712/18059694.2016.9
  40. Stephenson, I., Democratis, J., Lackenby, A., McNally, T., Smith, J., Pareek, M., Ellis, J., Bermingham, A., Nicholson, K. and Zambon, M. (2009) Neuraminidase inhibitor resistance after oseltamivir treatment of acute influenza A and B in children. Clin. Infect. Dis. 48, 389-396. https://doi.org/10.1086/596311
  41. Takahashi, K., Murakami, T., Yumoto, R., Hattori, T., Higashi, Y. and Yata, N. (1994) Decanoic acid induced enhancement of rectal absorption of hydrophilic compounds in rats. Pharm. Res. 11, 1401-1404. https://doi.org/10.1023/A:1018983620622
  42. van Hoogdalem, E., de Boer, A. G. and Breimer, D. D. (1991a) Pharmacokinetics of rectal drug administration, Part I. General considerations and clinical applications of centrally acting drugs. Clin. Pharmacokinet. 21, 11-26. https://doi.org/10.2165/00003088-199121010-00002
  43. van Hoogdalem, E. J., de Boer, A. G. and Breimer, D. D. (1991b) Pharmacokinetics of rectal drug administration, Part II. Clinical applications of peripherally acting drugs, and conclusions. Clin. Pharmacokinet. 21, 110-128. https://doi.org/10.2165/00003088-199121020-00003
  44. von Itzstein, M. (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 6, 967-974. https://doi.org/10.1038/nrd2400
  45. Whitehead, K., Karr, N. and Mitragotri, S. (2008a) Discovery of synergistic permeation enhancers for oral drug delivery. J. Control. Release 128, 128-133. https://doi.org/10.1016/j.jconrel.2008.03.005
  46. Whitehead, K., Karr, N. and Mitragotri, S. (2008b) Safe and effective permeation enhancers for oral drug delivery. Pharm. Res. 25, 1782-1788. https://doi.org/10.1007/s11095-007-9488-9
  47. Whitehead, K. and Mitragotri, S. (2008) Mechanistic analysis of chemical permeation enhancers for oral drug delivery. Pharm. Res. 25, 1412-1419. https://doi.org/10.1007/s11095-008-9542-2
  48. Yee, S. (1997) In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm. Res. 14, 763-766. https://doi.org/10.1023/A:1012102522787

Cited by

  1. Zanamivir oral delivery: possibilities revisited vol.6, pp.4, 2015, https://doi.org/10.4155/tde.15.9