DOI QR코드

DOI QR Code

Transcriptional Upregulation of Plasminogen Activator Inhibitor-1 in Rat Primary Astrocytes by a Proteasomal Inhibitor MG132

  • Cho, Kyu Suk (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Kwon, Kyoung Ja (Department of Neurology, School of Medicine, Konkuk University) ;
  • Jeon, Se Jin (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Joo, So Hyun (SMART Institute of Advanced Biomedical Science, Konkuk University) ;
  • Kim, Ki Chan (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Cheong, Jae Hoon (Department of Pharmacy, Sahmyook University) ;
  • Bahn, Geon Ho (Department of Neuropsychiatry, School of Medicine, Kyung Hee University) ;
  • Kim, Hahn Young (Department of Neurology, School of Medicine, Konkuk University) ;
  • Han, Seol Heui (Department of Neurology, School of Medicine, Konkuk University) ;
  • Shin, Chan Young (Department of Neuroscience, School of Medicine, Konkuk University) ;
  • Yang, Sung-Il (Department of Pharmacology, School of Medicine, Konkuk University)
  • 투고 : 2012.12.21
  • 심사 : 2013.01.29
  • 발행 : 2013.03.31

초록

Plasminogen activator inhibitor-1 (PAI-1) is a member of serine protease inhibitor family, which regulates the activity of tissue plasminogen activator (tPA). In CNS, tPA/PAI-1 activity is involved in the regulation of a variety of cellular processes such as neuronal development, synaptic plasticity and cell survival. To gain a more insights into the regulatory mechanism modulating tPA/PAI-1 activity in brain, we investigated the effects of proteasome inhibitors on tPA/PAI-1 expression and activity in rat primary astrocytes, the major cell type expressing both tPA and PAI-1. We found that submicromolar concentration of MG132, a cell permeable peptide-aldehyde inhibitor of ubiquitin proteasome pathway selectively upregulates PAI-1 expression. Upregulation of PAI-1 mRNA as well as increased PAI-1 promoter reporter activity suggested that MG132 transcriptionally increased PAI-1 expression. The induction of PAI-1 downregulated tPA activity in rat primary astrocytes. Another proteasome inhibitor lactacystin similarly increased the expression of PAI-1 in rat primary astrocytes. MG132 activated MAPK pathways as well as PI3K/Akt pathways. Inhibitors of these signaling pathways reduced MG132-mediated upregulation of PAI-1 in varying degrees and most prominent effects were observed with SB203580, a p38 MAPK pathway inhibitor. The regulation of tPA/PAI-1 activity by proteasome inhibitor in rat primary astrocytes may underlie the observed CNS effects of MG132 such as neuroprotection.

키워드

참고문헌

  1. Baranes, D., Lederfein, D., Huang, Y. Y., Chen, M., Bailey, C. H. and Kandel, E. R. (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21, 813-825. https://doi.org/10.1016/S0896-6273(00)80597-8
  2. Chen, J. J., Huang, W. C. and Chen, C. C. (2005) Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein. Mol. Biol. Cell 16, 5579-5591. https://doi.org/10.1091/mbc.E05-08-0778
  3. Cho, I. J., Kim, S. H. and Kim, S. G. (2006) Inhibition of TGFbeta1-mediated PAI-1 induction by oltipraz through selective interruption of Smad 3 activation. Cytokine 35, 284-294. https://doi.org/10.1016/j.cyto.2006.10.001
  4. Cho, K. S., Park, S. H., Joo, S. H., Kim, S. H. and Shin, C. Y. (2010) The effects of IL-32 on the inflammatory activation of cultured rat primary astrocytes. Biochem. Biophys. Res. Commun. 402, 48-53. https://doi.org/10.1016/j.bbrc.2010.09.099
  5. Czekay, R. P., Wilkins-Port, C. E., Higgins, S. P., Freytag, J., Overstreet, J. M., Klein, R. M., Higgins, C. E., Samarakoon, R. and Higgins, P. J. (2011) PAI-1: An integrator of cell signaling and migration. Int. J. Cell Biol. 2011, 562481.
  6. Docagne, F., Nicole, O., Gabriel, C., Fernandez-Monreal, M., Lesne, S., Ali, C., Plawinski, L., Carmeliet, P., MacKenzie, E. T., Buisson, A. and Vivien, D. (2002) Smad3-dependent induction of plasminogen activator inhibitor-1 in astrocytes mediates neuroprotective activity of transforming growth factor-${\beta}$eta 1 against NMDA-induced necrosis. Mol. Cell. Neurosci. 21, 634-644. https://doi.org/10.1006/mcne.2002.1206
  7. Doller, A., Gauer, S., Sobkowiak, E., Geiger, H., Pfeilschifter, J. and Eberhardt, W. (2009) Angiotensin II induces renal plasminogen activator inhibitor-1 and cyclooxygenase-2 expression post-transcriptionally via activation of the mRNA-stabilizing factor human-antigen R. Am. J. Pathol. 174, 1252-1263. https://doi.org/10.2353/ajpath.2009.080652
  8. Duan, W., Guo, Y., Jiang, H., Yu, X. and Li, C. (2011) MG132 enhances neurite outgrowth in neurons overexpressing mutant TAR DNA-binding protein-43 via increase of HO-1. Brain. Res. 1397, 1-9. https://doi.org/10.1016/j.brainres.2011.05.006
  9. Giasson, B. I., Bruening, W., Durham, H. D. and Mushynski, W. E. (1999) Activation of stress-activated protein kinases correlates with neurite outgrowth induced by protease inhibition in PC12 cells. J. Neurochem. 72, 1081-1087.
  10. Guo, N. and Peng, Z. (2012) MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac. J. Clin. Oncol. [Epub ahead of print]
  11. Higgins, P. J. (2006) The TGF-beta1/upstream stimulatory factor-regulated PAI-1 gene: potential involvement and a therapeutic target in Alzheimer's disease. J. Biomed. Biotechnol. 2006, 15792.
  12. Hultman, K., Blomstrand, F., Nilsson, M., Wilhelmsson, U., Malmgren, K., Pekny, M., Kousted, T., Jern, C. and Tjarnlund-Wolf, A. (2010) Expression of plasminogen activator inhibitor-1 and protease nexin-1 in human astrocytes: Response to injury-related factors. J. Neurosci. Res. 88, 2441-2449.
  13. Kim, J. W., Lee, S. H., Ko, H. M., Kwon, K. J., Cho, K. S., Choi, C. S., Park, J. H., Kim, H. Y., Lee, J., Han, S. H., Ignarro, L. J., Cheong, J. H., Kim, W. K. and Shin, C. Y. (2011) Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochem. Int. 58, 423-433. https://doi.org/10.1016/j.neuint.2010.12.020
  14. LeBel, C. P., Ali, S. F., McKee, M. and Bondy, S. C. (1990) Organometal-induced increases in oxygen reactive species: the potential of 2',7'-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol. Appl. Pharmacol. 104, 17-24. https://doi.org/10.1016/0041-008X(90)90278-3
  15. Lee, S. Y., Kim, H. J., Lee, W. J., Joo, S. H., Jeon, S. J., Kim, J. W., Kim, H. S., Han, S. H., Lee, J., Park, S. H., Cheong, J. H., Kim, W. K., Ko, K. H. and Shin, C. Y. (2008) Differential regulation of matrix metalloproteinase-9 and tissue plasminogen activator activity by the cyclic-AMP system in lipopolysaccharide-stimulated rat primary astrocytes. Neurochem. Res. 33, 2324-2334. https://doi.org/10.1007/s11064-008-9737-2
  16. Masos, T. and Miskin, R. (1997) mRNAs encoding urokinase-type plasminogen activator and plasminogen activator inhibitor-1 are elevated in the mouse brain following kainate-mediated excitation. Brain. Res. Mol. Brain. Res. 47, 157-169. https://doi.org/10.1016/S0169-328X(97)00040-5
  17. Nakayama, K., Furusu, A., Xu, Q., Konta, T. and Kitamura, M. (2001) Unexpected transcriptional induction of monocyte chemoattractant protein 1 by proteasome inhibition: involvement of the c-Jun N-terminal kinase-activator protein 1 pathway. J. Immunol. 167, 1145-1150. https://doi.org/10.4049/jimmunol.167.3.1145
  18. Oh, C. J., Kim, J. Y., Min, A. K., Park, K. G., Harris, R. A., Kim, H. J. and Lee, I. K. (2012) Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-${\beta}$/Smad signaling. Free. Radic. Biol. Med. 52, 671-682. https://doi.org/10.1016/j.freeradbiomed.2011.11.012
  19. Rachakonda, G., Sekhar, K. R., Jowhar, D., Samson, P. C., Wikswo, J. P., Beauchamp, R. D., Datta, P. K. and Freeman, M. L. (2010) Increased cell migration and plasticity in Nrf2-deficient cancer cell lines. Oncogene 29, 3703-3714. https://doi.org/10.1038/onc.2010.118
  20. Sahni, S. K., Rydkina, E. and Sahni, A. (2008) The proteasome inhibitor MG132 induces nuclear translocation of erythroid transcription factor Nrf2 and cyclooxygenase-2 expression in human vascular endothelial cells. Thromb. Res. 122, 820-825. https://doi.org/10.1016/j.thromres.2008.01.011
  21. Seeds, N. W., Basham, M. E. and Haffke, S. P. (1999) Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc. Natl. Acad. Sci. USA 96, 14118-14123. https://doi.org/10.1073/pnas.96.24.14118
  22. Shin, C. Y., Choi, J. W., Ryu, J. R., Ryu, J. H., Kim, W., Kim, H. and Ko, K. H. (2001) Immunostimulation of rat primary astrocytes decreases intracellular ATP level. Brain. Res. 902, 198-204. https://doi.org/10.1016/S0006-8993(01)02385-X
  23. Shin, C. Y., Kundel, M. and Wells, D. G. (2004) Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J. Neurosci. 24, 9425-9433. https://doi.org/10.1523/JNEUROSCI.2457-04.2004
  24. Song, E. J., Hong, H. M. and Yoo, Y. S. (2009) Proteasome inhibition induces neurite outgrowth through posttranslational modification of TrkA receptor. Int. J. Biochem. Cell Biol. 41, 539-545. https://doi.org/10.1016/j.biocel.2008.04.022
  25. Song, E. J. and Yoo, Y. S. (2011) Nerve growth factor-induced neurite outgrowth is potentiated by stabilization of TrkA receptors. BMB Rep. 44, 182-186. https://doi.org/10.5483/BMBRep.2011.44.3.182
  26. Woo, K. J., Park, J. W. and Kwon, T. K. (2006) Proteasome inhibitor-induced cyclooxygenase-2 expression in Raw264.7 cells is potentiated by inhibition of c-Jun N-terminal kinase activation. Biochem. Biophys. Res. Commun. 342, 1334-1340. https://doi.org/10.1016/j.bbrc.2006.02.105
  27. Wu, H. M., Chi, K. H. and Lin, W. W. (2002a) Proteasome inhibitors stimulate activator protein-1 pathway via reactive oxygen species production. FEBS Lett. 526, 101-105. https://doi.org/10.1016/S0014-5793(02)03151-4
  28. Wu, H. M., Wen, H. C. and Lin, W. W. (2002b) Proteasome inhibitors stimulate interleukin-8 expression via Ras and apoptosis signal-regulating kinase-dependent extracellular signal-related kinase and c-Jun N-terminal kinase activation. Am. J. Respir. Cell Mol. Biol. 27, 234-243. https://doi.org/10.1165/ajrcmb.27.2.4792
  29. Wu, Y. P., Siao, C. J., Lu, W., Sung, T. C., Frohman, M. A., Milev, P., Bugge, T. H., Degen, J. L., Levine, J. M., Margolis, R. U. and Tsirka, S. E. (2000) The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J. Cell Biol. 148, 1295-1304. https://doi.org/10.1083/jcb.148.6.1295
  30. Zhang, Y., Kanaho, Y., Frohman, M. A. and Tsirka, S. E. (2005) Phospholipase D1-promoted release of tissue plasminogen activator facilitates neurite outgrowth. J. Neurosci. 25, 1797-1805. https://doi.org/10.1523/JNEUROSCI.4850-04.2005

피인용 문헌

  1. The Role of Ubiquitination and Sumoylation in Diabetic Nephropathy vol.2014, 2014, https://doi.org/10.1155/2014/160692
  2. The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN DegradationIn VivoandIn Vitro vol.2014, 2014, https://doi.org/10.1155/2014/684765
  3. Ginkgo bilobaExtract (EGb 761®) Inhibits Glutamate-induced Up-regulation of Tissue Plasminogen Activator Through Inhibition of c-Fos Translocation in Rat Primary Cortical Neurons vol.30, pp.1, 2016, https://doi.org/10.1002/ptr.5500
  4. Resveratrol down-regulates a glutamate-induced tissue plasminogen activator via Erk and AMPK/mTOR pathways in rat primary cortical neurons vol.5, pp.5, 2014, https://doi.org/10.1039/c3fo60397k
  5. Immunotoxicological Effects of Aripiprazole:In vivoandIn vitroStudies vol.19, pp.4, 2015, https://doi.org/10.4196/kjpp.2015.19.4.365
  6. Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes vol.27, pp.3, 2013, https://doi.org/10.4062/biomolther.2018.107