Korean J. Math. **21** (2013), No. 1, pp. 35–39 http://dx.doi.org/10.11568/kjm.2013.21.1.35

CONTINUITY OF THE SPECTRUM ON $(class A)^*$

JAE WON LEE AND IN HO JEON*

ABSTRACT. Let $(class \mathcal{A})^*$ denotes the class of operators satisfying $|T^2| \ge |T^*|^2$. In this paper, we show that the spectrum is continuous on $(class \mathcal{A})^*$.

1. Introduction

Let $\mathscr{L}(\mathscr{H})$ denotes the algebra of bounded linear operators on a complex infinite dimensional Hilbert space \mathscr{H} . Recall [1] that $T \in \mathscr{L}(\mathscr{H})$ is called *hyponormal* if $T^*T \geq TT^*$, and T is called **-paranormal* if

$$||T^2x|| \ge ||T^*x||^2$$

for all unit vector $x \in \mathcal{H}$. Recently, B. P. Duggal, I. H. Jeon, and I. H. Kim [7] consider a following class of operators; we say that an operator $T \in \mathcal{L}(\mathcal{H})$ belongs to $(\text{class}\mathcal{A})^*$ if

$$|T^2| \ge |T^*|^2.$$

For brevity, we shall denote classes of hyponormal operators, *-paranormal operators, and $(class \mathcal{A})^*$ operators by $\mathcal{H}, \mathcal{PN}^*$, and $(class \mathcal{A})^*$, respectively. From [7] it is well known that

(1.1)
$$\mathcal{H} \subset (class \mathcal{A})^* \subset \mathcal{PN}^*.$$

Received December 20, 2012. Revised January 22, 2013. Accepted January 25, 2013.

2010 Mathematics Subject Classification: 47B20.

Key words and phrases: *-class A operator, spectral continuity.

This paper was supported by Research Fund, Kumoh National Institute of Technology.

*Corresponding author.

© The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. Jae Won Lee and In Ho Jeon

Let \mathcal{K} denote the set of all compact subsets of the complex plane \mathbb{C} . Equipping \mathcal{K} with the Hausdorff metric, one may consider the spectrum σ as a function $\sigma : \mathscr{L}(\mathscr{H}) \to \mathcal{K}$ mapping operators $T \in \mathscr{L}(\mathscr{H})$ into their spectrum $\sigma(T)$. It is known that the function σ is upper semicontinuous, but has points of discontinuity [8, p.56]. Studies identifying sets \mathcal{C} of operators for which σ becomes continuous when restricted to \mathcal{C} has been carried out by a number authors (see, for example, [3, 4, 5, 6, 9]).

Given an operator $T \in \mathscr{L}(\mathscr{H})$, let $\alpha(T) = \dim(T^{-1}(0))$ and $\beta(T) = \dim(\mathscr{H} \setminus T\mathscr{H})$. *T* is upper semi-Fredholm if $T\mathscr{H}$ is closed and $\alpha(T) < \infty$, and then the index of *T*, $\operatorname{ind}(T)$, is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$. *T* is said to be Fredholm if $T\mathscr{H}$ is closed and the deficiency indices $\alpha(T)$ and $\beta(T)$ are (both) finite.

Let $T^{\circ} \in \mathscr{L}(\mathscr{K})$ denote the Berberian extension of an operator $T \in \mathscr{L}(\mathscr{H})$. Then the Berberian extension theorem [2] says that given an operator $T \in \mathscr{L}(\mathscr{H})$ there exists a Hilbert space $\mathscr{K} \supseteq \mathscr{H}$ and an isometric *-isomorphism $T \to T^{\circ} \in \mathscr{L}(\mathscr{K})$ preserving order such that $\sigma(T) = \sigma(T^{\circ})$ and $\sigma_p(T^{\circ}) = \sigma_a(T^{\circ}) = \sigma_a(T)$. Here σ_p and σ_a denote, respectively, the point spectrum and the approximate point spectrum. In the following, we shall denote the set of accumulation points (resp. isolated points) of $\sigma(T)$ by $\operatorname{acc}\sigma(T)(\operatorname{resp.} \operatorname{iso}\sigma(T))$.

The aim of this paper is to give a proof of the following theorem.

THEOREM 1.1. The spectrum σ is continuous on $(class \mathcal{A})^*$.

To prove the theorem we adopt the Berberian technique used in [6] and we, in a sense, try to approach in a little different way.

2. Proof of Theorem 1.1

Since the function σ is upper semi-continuous [8], if $\{A_n\} \subset \mathscr{L}(\mathscr{H})$ is a sequence which converges in the operator norm topology to $A \in \mathscr{L}(\mathscr{H})$ then

(2.1)
$$\limsup_{n} \sigma(A_n) \subseteq \sigma(A).$$

Thus to prove the theorem it would suffice to prove that if $\{A_n\} \subset (class \mathcal{A})^*$ is a sequence of operators such that $\lim_{n\to\infty} ||A_n - A|| = 0$ for

36

some operator $A \in (class \mathcal{A})^*$, then

(2.2)
$$\sigma(A) \subseteq \liminf \sigma(A_n).$$

We first consider the following lemma, which actually is proved in [9, Lemma 2], but for the completeness we give a proof.

LEMMA 2.1. Let $\{A_n\} \subset \mathscr{L}(\mathscr{H})$ be a sequence which converges in the operator norm topology to $A \in \mathscr{L}(\mathscr{H})$. Then

(2.3)
$$\sigma_a(A) \subseteq \liminf_n \sigma(A_n) \Rightarrow \sigma(A) \subseteq \liminf_n \sigma(A_n).$$

Proof. Suppose that $\lambda \notin \liminf_n \sigma(A_n)$. Then there exists a $\delta > 0$, a neighbourhood $\mathcal{N}_{\delta}(\lambda)$ of λ and a subsequence $\{A_{n_k}\}$ of $\{A_n\}$ such that $\sigma(A_{n_k}) \cap \mathcal{N}_{\delta}(\lambda) = \emptyset$ for every $k \ge 1$. This implies that $A_{n_k} - \mu$ is Fredholm and $\operatorname{ind}(A_{n_k} - \mu) = 0$ for every $\mu \in \mathcal{N}_{\delta}(\lambda)$. Since $\lambda \notin \sigma_a(A)$ by the assumption, then $A - \lambda$ is left invertible, hence upper semi-Fredholm with $\alpha(A - \lambda) = 0$. Then

$$||(A_{n_k} - \lambda) - (A - \lambda)|| \to 0 \text{ as } n \to 0$$

and the continuity of the index implies that $\operatorname{ind}(A - \lambda) = 0$, and so $A - \lambda$ is Weyl. Since $\alpha(A - \lambda) = 0$, it follows that $\lambda \notin \sigma(A)$.

It is well known that, from an argument of Newburgh [10, Lemma 3],

(2.4)
$$\lambda \in iso\sigma(A) \Rightarrow \lambda \in \liminf \sigma(A_n).$$

Indeed, if $\lambda \in iso\sigma(A)$, then for every neighbourhood $\mathcal{N}(\lambda)$ of λ there exists a positive integer N such that $\sigma(A_n) \cap \mathcal{N}(\lambda) \neq \emptyset$ for all n > N.

Now, we consider corresponding the Berberian extensions to A and the sequence $\{A_n\}$ as mensioned above, and then have that

$$\sigma(A) = \sigma(A^{\circ}), \sigma(A_n) = \sigma(A_n^{\circ}) \text{ and } \sigma_a(A) = \sigma_a(A^{\circ}) = \sigma_p(A^{\circ}).$$

Since if $T \in (class \mathcal{A})^*$ then $T^{\circ} \in (class \mathcal{A})^*$, we have that

(2.5)
$$\sigma(A) \subseteq \liminf_{n} \sigma(A_{n}) \Longleftrightarrow \sigma(A^{\circ}) \subseteq \liminf_{n} \sigma(A_{n}^{\circ})$$

To complete the proof of the theorem we show the following lemma in the view of Lemma 2.1.

LEMMA 2.2. Let $\{A_n\} \subset (class \mathcal{A})^*$ be a sequence which converges in the operator norm topology to $A \in (class \mathcal{A})^*$. Then

(2.6)
$$\sigma_a(A^\circ) \subseteq \liminf_n \sigma(A^\circ_n).$$

Jae Won Lee and In Ho Jeon

Proof. If $\lambda \in \sigma_a(A^\circ) = \sigma_p(A^\circ)$, then $(A^\circ - \lambda)^{-1}(0)$ is a reducing subspace of A° [7, Lemma 2.2], and so we have a representation of A° ,

$$A^{\circ} = \lambda \oplus B$$
 on $\mathscr{K} = (A^{\circ} - \lambda)^{-1}(0) \oplus \{(A^{\circ} - \lambda)^{-1}(0)\}^{\perp}$

Evidently, $B - \lambda$ is upper semi-Fredholm and $\alpha(B - \lambda) = 0$. There exists an $\epsilon > 0$ such that $B - (\lambda - \mu_o)$ is upper semi-Fredholm with $\operatorname{ind}(B - (\lambda - \mu_o)) = \operatorname{ind}(B - \lambda)$ and $\alpha(B - (\lambda - \mu_o)) = 0$ for every μ_o satisfying $0 < |\mu_o| < \epsilon$. Choose $0 < \epsilon < \delta$ and set $\mu = \lambda - \mu_o$ $(0 < |\mu_o| < \epsilon)$. (Here $\delta > 0$ as in proof of Lemma 2.1) Then $B - \mu$ is upper semi-Fredholm, $\operatorname{ind}(B - \mu) = \operatorname{ind}(B - \lambda)$ and $\alpha(B - \mu) = 0$. This implies that

$$A^{\circ} - \mu = \lambda - \mu \oplus B - \mu$$

is upper semi-Fredholm,

$$\operatorname{ind}(A^{\circ} - \mu) = \operatorname{ind}(B - \mu) \text{ and } \alpha(A^{\circ} - \mu) = 0.$$

Assume to the contrary that $\lambda \notin \liminf_n \sigma(A_n^\circ)$, then evidently, $A_{n_k}^\circ - \mu$ is Fredholm, with $\operatorname{ind}(A_{n_k}^\circ - \mu) = 0$, and

$$\lim_{n \to \infty} ||(A_{n_k}^{\circ} - \mu) - (A^{\circ} - \mu)|| = 0.$$

It follows from the continuity of the index that $\operatorname{ind}(A^{\circ} - \mu) = 0$ and $A^{\circ} - \mu$ is Fredholm. Since $\alpha(A^{\circ} - \mu) = 0$, $\mu \notin \sigma(A^{\circ})$ for every μ in a deleted ϵ -neighbourhood of λ . This contradicts to (2.4). Hence we must have that $\lambda \in \liminf_n \sigma(A_n^{\circ})$.

References

- S. C. Arora, J.K. Thukral, On a class of operators, Glas. Mat. Ser. III 21 (1986), 381-386.
- [2] S. K. Berberian Approximate proper vectors, Proc. Amer. Math. Soc. 13(1962), 111-114.
- [3] S. V. Djordjević and B. P. Duggal, Weyl's theorem and continuity of spectra in the class of p-hyponormal operators, Studia Math. 143(2000), 23–32.
- [4] S. V. Djordjević and Y. M. Han, Browder's theorem and spectral continuity, Glasg. Math. J. 42(2000), 479–486.
- [5] S. V. Djordjević, Continuity of the essential spectrum in the class of quasihyponormal operators, Math. Vesnik 50(1998), 71–74.
- [6] B. P. Duggal, I. H. Jeon, and I. H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), 584–587.
- [7] B. P. Duggal, I. H. Jeon, and I. H. Kim, On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436(2012), 954–962.
- [8] P. B. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.

38

[9] I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of phyponormal operators, Math. Z. 235(2000), 151–157.

[10] J. D. Newburgh, The variation of spectra, Duke Math. J. 18(1951), 165–176.

Department of Applied Mathematics Kumoh National Institute of Technology Gumi 730-701, Korea *E-mail*: ljaewon@mail.kumoh.ac.kr

Department of Mathematics Education Seoul National University of Education Seoul 137-742, Korea *E-mail*: jihmath@snue.ac.kr