DOI QR코드

DOI QR Code

Characterization of Conducting Polymer/CdTe Nanoparticles/Carbon Nanotube Composites in Thin Films

전도성 고분자/CdTe 나노입자/탄소 나노튜브 복합박막의 특성 연구

  • Kim, Do-Hoon (Department of Materials & Components Engineering, Dong-Eui University) ;
  • Shim, Seong Eun (Department of Materials & Components Engineering, Dong-Eui University) ;
  • Kim, Jungsoo (Dongnam Regional Division, Korea Institute of Industrial Technology) ;
  • Nam, Dae-Geun (Dongnam Regional Division, Korea Institute of Industrial Technology) ;
  • Oh, Weontea (Department of Materials & Components Engineering, Dong-Eui University)
  • 김도훈 (동의대학교 융합부품공학과) ;
  • 심성은 (동의대학교 융합부품공학과) ;
  • 김정수 (한국생산기술연구원 동남권지역본부) ;
  • 남대근 (한국생산기술연구원 동남권지역본부) ;
  • 오원태 (동의대학교 융합부품공학과)
  • Received : 2013.03.13
  • Accepted : 2013.03.21
  • Published : 2013.04.01

Abstract

The composites composed of conducting polymer (MEH-PPV), CdTe nanoparticles, and multiwalled carbon nanotubes (MWNTs) were spectroscopically and electrically characterized in their thin films. The composite films were prepared by spray coating. These composites were prepared from the mixture solution of MEH-PPV and CdTe-embedded MWNTs, in which CdTe nanoparticles were electrostatically bound to MWNTs. UV/vis and PL spectra were analyzed to investigate the optical absorbance and emission of the composite films. In addition, their structural, electrochemical, and electrical properties were studied by transmission electron microscopy, cyclic voltammetry, and I-V measurement.

Keywords

References

  1. S. M. Lyth, R. A. Hatton, and S. R. P. Silva, Appl. Phys. Lett., 90, 013120 (2007). https://doi.org/10.1063/1.2430091
  2. M. Shiraishi, M. Ata, Carbon, 39, 1913 (2001). https://doi.org/10.1016/S0008-6223(00)00322-5
  3. B. B. Thompson and J. M. H. Frechet, Anqew. Chem. Int. Ed. 47, 58 (2008). https://doi.org/10.1002/anie.200702506
  4. S. H. Kim, J. Y. Lee, W. K. Han, and J. H. Lee, Thin Solid Films, 518, 7222 (2010). https://doi.org/10.1016/j.tsf.2010.04.079
  5. J. Fritsche, D. Kraft, A. Thissen, T. Mayer, A. Klein, and W. Jeagermann, Thin Solid Films, 403, 252 (2002).
  6. I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, Sol. Energ. Mat. Sol. C., 61, 203 (2000). https://doi.org/10.1016/S0927-0248(99)00114-2
  7. J. Yang, I. Shalish, and Y. Shapira, Phys. Rev. B, 64, 035325 (2001). https://doi.org/10.1103/PhysRevB.64.035325
  8. G. H. Jun, S. H. Jin, S. H. Park, S. Jeon, and S. H. Hong, Carbon, 50, 40 (2012). https://doi.org/10.1016/j.carbon.2011.07.052
  9. S. H. Jin, G. H. Jun, S. H. Hong, and S. Jeon, Carbon, 50, 4483 (2012). https://doi.org/10.1016/j.carbon.2012.05.027
  10. N. A. Rice, K. Soper, N. Zhou, E. Merschrod, and Y. Zhao, Chem. Commun., 47, 4937 (2006).
  11. D. J. Yun, K. Hong, S. H. Kim, W. M. Yun, J. Y. Jang, W. S. Kwon, C. E. Park, and S. W. Rhee, ACS Appl. Mater. Interf, 3, 43 (2011). https://doi.org/10.1021/am1008375
  12. S. H. Yang, C. C. Wu, C. F. Lee, and M. H. Liu, Displays, 29, 214 (2008). https://doi.org/10.1016/j.displa.2007.08.002
  13. S. Pfeiffer and H. H. Horhold, Synthetic Metals, 101, 109 (1999). https://doi.org/10.1016/S0379-6779(98)01279-X
  14. C. V. Hoven, R. Yang, A. Garcia, V. Crockett, A. J. Heeger, G. C. Bazan, and T. Q. Nguyen, PNAS, 105, 12730 (2008). https://doi.org/10.1073/pnas.0806494105
  15. J. Kim, G. W. Lee, and W. Oh, J. KIEEME, 20, 878 (2007).
  16. M. M. Rabbani, J. S. Bae, D. Kim, C. H. Ko, D. G. Nam, Y. Kim, J. H. Yeum, and W. Oh, J. Nanosci. Nanothech., 11, 6453 (2011). https://doi.org/10.1166/jnn.2011.4427
  17. D. Kim, J. S. Bae, M. M. Rabbani, D. G. Nam, C. H. Ko, J. H. Yeum, and W. Oh, J. Nanosci. Nanothech., 12, 5870 (2012). https://doi.org/10.1166/jnn.2012.6285
  18. H. Ding, P. Bertoncello, M. K. Ram, and C. Nicolini, Electrochem. Commun., 4, 503 (2002). https://doi.org/10.1016/S1388-2481(02)00359-4
  19. S. Khene, S. Moeno, and T. Nyokong, Polyhedron, 30, 2162 (2011). https://doi.org/10.1016/j.poly.2011.06.002
  20. H. Lee, S. Kim, W. S. Chung, K. Kim, and D. Kim, Sol. Energ. Mat. Sol. C., 95, 446 (2011). https://doi.org/10.1016/j.solmat.2010.08.029
  21. M. K. Ram, N. Sarkar, P. Bertoncello, A. Sarkar, R. Narizzano, and C. Nicolini, Synthetic Metals, 122, 369 (2001). https://doi.org/10.1016/S0379-6779(00)00396-9
  22. D. Verma, A. R. Rao, and V. Dutta, Sol. Energ. Mat. Sol. C., 93, 1482 (2009). https://doi.org/10.1016/j.solmat.2009.03.030
  23. S. Banerjee and S. S. Wong, Nano Lett., 2, 195 (2002). https://doi.org/10.1021/nl015651n
  24. K. Inpor, V. Meeyoo, and C. Thanachayanont, Curr. Appl. Phys., 11, S171 (2011).
  25. C. Ton-That, M. R. Phillips, and T. P. Nguyen, J. Luminescence, 128, 2031 (2008). https://doi.org/10.1016/j.jlumin.2008.07.004
  26. Q. Fei, D. Xiao, Z. Zhang, Y. Huan, and G. Feng, Elsevier Spectrochimica Acta Part A, 74, 597 (2009). https://doi.org/10.1016/j.saa.2009.06.056
  27. Y. Zenga, C. Tang, H. Wang, J. Jiang, M. Tian, G. Shen, and R. Yu, Elsevier Spectrochimica Acta Part A, 70, 966 (2008). https://doi.org/10.1016/j.saa.2007.10.012
  28. D. Deng, M. Shi, F. Chen, L. Chen, X. Jiang, and H. Chen, Sol. Energy, 84, 771 (2010). https://doi.org/10.1016/j.solener.2010.01.028
  29. A. Misra, P. Kumar, R. Srivastava, S. K. Dhawan, M. N. Kamalasanan, and S. Chandra, Indian J. Pure Appl. Phys., 43, 921 (2005).