DOI QR코드

DOI QR Code

CaMoO4:Tb3+ 녹색 형광체 분말과 박막의 제조와 발광 특성

Synthesis and Emission Properties of CaMoO4:Tb3+ Green Phosphor Powders and Thin Films

  • 전용일 (신라대학교 신소재공학과) ;
  • 조신호 (신라대학교 신소재공학과)
  • Jeon, Yongil (Department of Materials Science and Engineering, Silla University) ;
  • Cho, Shinho (Department of Materials Science and Engineering, Silla University)
  • 투고 : 2013.01.22
  • 심사 : 2013.03.01
  • 발행 : 2013.04.01

초록

$CaMoO_4:Tb^{3+}$ green phosphor powders and thin films were successfully prepared by using the solid-state reaction method and the radio-frequency magnetron sputtering technique, respectively. The crystalline structure of all phosphor powders with different $Tb^{3+}$ ion concentrations was found to be a tetragonal system with the maximum diffraction intensity at $28.58^{\circ}$, while that of the phosphor thin films, irrespective of the type of substrate, was amorphous. As for the phosphor powders, the grain particles showed the chain-like patterns with inhomogeneous size distribution, the excitation spectra were composed of a broad band peaked at 307 nm and two small narrow bands centered at 381 and 492 nm, and the highest green emission spectrum was observed at 0.01 mol of $Tb^{3+}$ ions. As for the phosphor thin films, the average transmittance exceeding 85% was measured in the 400~1,100 nm range and the optical band gap showed a significant dependence on the type of substrate.

키워드

참고문헌

  1. T. Thongtem, A. Phuruangrat, and S. Thongtem, Mater. Lett., 62, 454 (2008). https://doi.org/10.1016/j.matlet.2007.05.059
  2. P. G. Zverev, Phys. Stat. Sol. C, 1, 3101 (2004). https://doi.org/10.1002/pssc.200405413
  3. M. J. Kim and Y. D. Huh, Opt. Mater., 35, 263 (2012). https://doi.org/10.1016/j.optmat.2012.08.012
  4. Y. Wang, J. Ma, J. Tao, X. Zhu, J. Zhou, Z. Zhao, L. Xie, and H. Tian, Ceram. Inter., 33, 693 (2007). https://doi.org/10.1016/j.ceramint.2005.11.003
  5. P. Yang, G. Q. Yao, and J. H. Lin, Inorg. Chem. Commun., 7, 389 (2004). https://doi.org/10.1016/j.inoche.2003.12.021
  6. K. Teshima, K. Yubuta, S. Sugiura, Y. Fujita, T. Suzuki, M. Endo, T. Shishido, and S. Oishi, Cryst. Growth Des., 6, 1598 (2006). https://doi.org/10.1021/cg050673z
  7. M. Fujita, M. Itoh, S. Takagi, T. Shimizu, and N. Fujita, Phys. Stat. Sol. B, 243, 1898 (2006). https://doi.org/10.1002/pssb.200541468
  8. Y. S. Hu, W. D. Zhuang, and H. Q. Ye, J. Rare Earths, 22, 821 (2004).
  9. A. P. A. Marques, D. M. A. Melo, C. A. Paskocimas, P. S. Pizani, M. R. Joya, E. R. Leite, and E. Longo, J. Solid State Chem., 179, 658 (2006).
  10. C. Cui, J. Bi, and D. Gao, Appl. Surf. Sci., 255, 3463 (2008). https://doi.org/10.1016/j.apsusc.2008.07.166
  11. D. Gao, X. Lai, C. Cui, P. Cheng, J. Bi, and D. Lin, Thin Solid Films, 518, 3151 (2010). https://doi.org/10.1016/j.tsf.2009.08.040
  12. A. P. A. Marques, V. M. Longo, D. M. A. Melo, P. S. Pizani, E. R. Leite, J. A. Varela, and E. Longo, J. Solid State Chem. 181, 1249 (2008). https://doi.org/10.1016/j.jssc.2008.01.051
  13. Z. J. Zhang, H. H. Chen, X. X. Yang, and J. T. Zhao, Mater. Sci. Eng. B, 145, 34 (2007). https://doi.org/10.1016/j.mseb.2007.09.091
  14. M. A. Flores-Gonzalez, G. Ledoux, S. Roux, K. Lebbou, P. Perriat, and O. Tillement, J. Solid State Chem, 178, 989 (2005). https://doi.org/10.1016/j.jssc.2004.10.029
  15. J. Zhang, Y. Wang, Z. Zhang, Z. Wang, and B. Liu, Mater. Lett., 62, 202 (2008). https://doi.org/10.1016/j.matlet.2007.04.101
  16. S. Cho, J. KIEEME, 24, 659 (2011).
  17. S. Cho, Trans. Electr. Electron. Mater., 10, 185 (2009). https://doi.org/10.4313/TEEM.2009.10.6.185
  18. F. Yakuphanoglu, M. Sekerci, and O. F. Ozturk, Opt. Comm., 239, 275 (2004). https://doi.org/10.1016/j.optcom.2004.05.038
  19. H. Lei, X. Zhu, S. Zhang, G. Li, X. Tang, W. Song, Z. Yang, J. Dai, and Y. Sun, J. Phys. D: Appl. Phys., 42, 045404 (2009). https://doi.org/10.1088/0022-3727/42/4/045404